Profile
Quantum Nanoscience is a novel research field in which quantum effects, such as quantum state superposition, entanglement and coherence, are studied in nanoscale systems. Coherent quantum effects at the nanoscale are relatively uncharted territory. Therefore, at this point in time much of quantum nanoscience is dedicated to understanding the mechanisms of decoherence, with the aim to preserve and maximize coherence. Eventually, this will result in the development of nanostructures that can be used for emerging quantum technologies, such as quantum computing, quantum communication, and quantum sensing. These quantum technologies drive the so-called second quantum revolution.
While quantum nanoscience is a bridge between quantum materials and quantum technologies, it also plays an even more profound role. Nanoscale artificial systems of matter with engineered quantum states cannot only be realized in ion traps and ultracold atomic gases, but also at surfaces of condensed matter. Although fabricated at the surface of a material as a template, these artificial nanostructures transcend the concept of a crystalline material: They are metastable structures that are fabricated by placing the building blocks (atoms, molecules, 1D wires, 2D sheets) in precisely defined positions. Such designed and crafted artificial structures are a nearly universal playground in which concepts of quantum technology can be explored and exploited, without being constrained by the existence and stability of suitable materials.
Coming from traditional nanoscience (“functional nanostructures at surfaces”), we use our extensive knowledge in surface science and nanoscience to contribute to quantum nanoscience and its primary goal: the manipulation and exploitation of quantum-coherent functionality in nanostructures.
In particular, our profile as a surface science institute with a strong focus on scanning probe microscopy, as well as method and instrument development, puts us in an excellent position to address each of the four pillars of quantum nanoscience:
- Exploring quantumness: we use the experimental platform of scanning probe microscopies (SPM) at low temperatures to investigate quantum coherence, or more generally quantumness, in diverse nanostructures on atomic length scales and in the time domain.
- Materials: we investigate interfaces between materials that bestow quantum functionality, such as topological insulators, superconductors or ferromagnets.
- Tools: we develop novel instruments and microscopies that provide access to the quantum-coherent functionalities of nanostructures. Examples are the Jülich Multi-tip SPMs, the Jülich Millikelvin SPM, and scanning quantum dot microscopy.
- Devices: we fabricate and study model devices as metastable artificial structures with purpose-engineered quantum states, in part by using artificial intelligence.
Second quantum revolutionThe first quantum revolution, which took place at the beginning of the 20th century, revealed the rules that govern physical reality. During this time, the foundations of quantum mechanics were laid. In the 100+ years since then, quantum mechanics was applied to many fields of research, among which the physics of condensed matter, including molecules, solid-state materials, surfaces and interfaces, is particularly important. The profound description of solid-state materials as well as surface and interface phenomena resulted in several technologies on which our modern way of life is based, most prominently information technology.
|
Last updated: 30 Sep 2020