Magnetic materials and crystal growth

Our Research

Complex metallic materials such as topological magnets, high-entropy alloys and quasicrystals exhibit unique structural properties that give rise to a variety of phenomena and effects. Often, these are not well understood but bear great potential for future application in fields such as electronics, energy systems, and quantum technology.

We employ advanced transmission electron microscopy to investigate structural, chemical, electronic and magnetic properties including in situ investigations using temperature and mechanical stimuli, electrical bias and optical illumination. For the understanding of subtle effects intrinsic to the materials, it is imperative to work on samples of highest structural purity and quality. To this end, we develop dedicated growth routes and utilize advanced single-crystal growth methods such as the Czochralski-, Bridgman and self-flux growth technique.

Research topics:

-              Development of growth routes in multicomponent metallic systems

-              Single-crystal and single-phase production of complex metallic alloys

-              Quantitative magnetic imaging using Lorentz TEM, differential phase contrast imaging and electron holography

-              In situ TEM investigations of functional properties

Points of contact

Dr. Michael Feuerbacher

Scientific staff at ER-C-1

  • er-c
  • er-c-1
Building 05.2 /
Room 3075
+49 2461/61-2409
E-Mail

Dr. Andras Kovacs

Scientific staff at ER-C-1

  • er-c
  • er-c-1
Building 05.2 /
Room 3084
+49 2461/61-9276
E-Mail

Selected Publications

Last Modified: 10.04.2025