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1. Introduction 

X-ray diffraction (XRD) is a powerful and versatile technique to characterize crystals. XRD employs 

elastic scattering of monochromatic x-ray light at atoms of the crystal, which will subsequently 

constructively interfere. From the geometrical arrangement of the sample and the detector, 

information of the crystal are obtained. The information include: 

 Crystal structure 

 Lattice constants 

 Alloy concentrations  

 Strain status  

 Film thicknesses 

 Interdiffusion processes 

 

 
 
Fig 1: Photograph of the XRD system employed for this lab course (a). Geometrical arrangement of 
the XRD technique, including the crystal structure, the incoming and outgoing x-ray beams, and  the 
investigated net planes (b). 

 

Figure 1 a) shows the XRD system used in the lab course. It consist of a x-ray source, a sample holder, 

and a detector. In the x-ray source is built of a copper block, on which high energy electrons impinge 

upon (U = 40 kV). When the electrons enter the copper block, they are decelerated emitting a 

continuous spectrum of electromagnetic radiation, so called Bremsstrahlung. Besides, emission of 

discrete lines also takes place by means of excitations within the copper atoms, i.e. the Cu K1 

radiation with a distinct wavelength  = 1.54062 Å. This monochromatic radiation is used for the XRD 

experiments. In order to filter out the Cu K1 radiation, the x-ray source is equipped with a 4-crystal 

Ge monochromator, i.e. 4 Ge single crystals that are cut and aligned to employ the (022) reflection, 

which corresponds to the Cu K1 wavelength. For the XRD scans, the sample on the sample stage and 

the detector are rotated with an angular resolution of 0.001°. The latter is equipped with mechanical 

slits as well as an additional Ge monochromator in order to obtain a very high detector resolution.  

 

 



 

XRD is based on constructive interference of x-ray light on net planes. A theoretical description of 

constructive interference on net planes (h,k,l) is illustrated in figure 1 b). Here two coherent x-ray 

beams with wavelength  (colored black and gray) impinge on net planes with distance dhkl under the 

angle  are shown, whereas the gray x-ray beam travels a longer distance L = 2dhkl*sin(), as illustrated 

by the red line in Fig. 1 b). Constructive interference is obtained if the change in distance between the 

two x-ray beams L is multiple of the wavelength lambda: 

𝑚𝜆 = 2𝑑ℎ𝑘𝑙 sin(𝜃), 𝑚 = 1,2,3,… [1] 
 

Equation 1 is the Bragg equation, and is employed to find the geometrical arrangement (angle ) to 

measure x-ray signals of these net planes.  

Apart from dealing with net planes in real space, another very elegant way to carry out XRD is to work 

in the reciprocal space. Assuming a crystal represented by the Bravais lattice vectors (𝑎1⃗⃗⃗⃗ , 𝑎2⃗⃗⃗⃗ , 𝑎3⃗⃗⃗⃗ ), the 

corresponding reciprocal vectors (𝑏1
⃗⃗  ⃗, 𝑏2

⃗⃗⃗⃗ , 𝑏3
⃗⃗⃗⃗ ) are defined as follows: 

𝑏⃗ 1 = 2𝜋
𝑎2⃗⃗⃗⃗ ×  𝑎3⃗⃗⃗⃗ 

𝑎1⃗⃗⃗⃗ (𝑎2⃗⃗⃗⃗ ×  𝑎3⃗⃗⃗⃗ )
,    𝑏⃗ 2 = 2𝜋

𝑎3⃗⃗⃗⃗ × 𝑎1⃗⃗⃗⃗ 

𝑎1⃗⃗⃗⃗ (𝑎2⃗⃗⃗⃗ ×  𝑎3⃗⃗⃗⃗ )
,    𝑏⃗ 3 = 2𝜋

𝑎3⃗⃗⃗⃗ ×  𝑎1⃗⃗⃗⃗ 

𝑎1⃗⃗⃗⃗ (𝑎2⃗⃗⃗⃗ × 𝑎3⃗⃗⃗⃗ )
 [2] 

 

 

Figure 2 depicts the Bravais lattice vectors of a cubic crystal (a) with lattice constant a (e.g. Si, Ge, GaAs, 

InP, …) and their reciprocal lattice vectors (b). It turns out (unlike many other crystals) that the 

reciprocal lattice of a cubic crystal is again a cubic crystal with a reciprocal lattice constant 2/a. The 

reciprocal lattice vector 𝐾⃗⃗ ℎ𝑘𝑙 is now very useful to define the XRD scan around the (h,k,l) reflection, 

which is equivalent to a XRD scan at the (h,k,l) net plane: 

𝐾⃗⃗ ℎ𝑘𝑙 = ℎ𝑏1
⃗⃗  ⃗ + 𝑘𝑏2

⃗⃗⃗⃗ + 𝑙𝑏3
⃗⃗⃗⃗  [3] 

 

A very beneficial property of 𝐾⃗⃗ ℎ𝑘𝑙 is the fact that it stand perpendicular to the (h,k,l) netplanes and its 

magnitude is inversely proportional to the net spacing dhkl: 

𝑑ℎ𝑘𝑙 = 
2𝜋

|𝐾⃗⃗ |
 [4] 

 

 

Fig 2: Cubic crystal structure in real space (a) and in reciprocal space (b). 



 

Employing equations 3 and 4, it is now possible to determine the Bragg angle  for a reflection (h,k,l) 

for cubic crystals. In a similar fashion, it is also possible to determine the tilt angle  between the net 

planes and the sample surface (cf. fig 1 b). Assuming a (m,n,o)-oriented surface, the reciprocal vector 

𝐾⃗⃗ 𝑚𝑛𝑜 that stands perpendicular to the sample surface: 

𝐾⃗⃗ 𝑚𝑛𝑜 = 𝑚𝑏1
⃗⃗  ⃗ + 𝑛𝑏2

⃗⃗⃗⃗ + 𝑜𝑏3
⃗⃗⃗⃗  [5] 

 

Recalling that 𝐾⃗⃗ ℎ𝑘𝑙 stands perpendicular to the net planes (h,k,l), the angle between net planes and 

the sample surface is simply the angle between the two vector 𝐾⃗⃗ ℎ𝑘𝑙 and 𝐾⃗⃗ 𝑚𝑛𝑜: 

𝜑 = cos−1 (
𝐾⃗⃗ ℎ𝑘𝑙  ∙  𝐾⃗⃗ 𝑚𝑛𝑜

|𝐾⃗⃗ ℎ𝑘𝑙|  ∙  |𝐾⃗⃗ 𝑚𝑛𝑜|
) [6] 

 

In order to carry out XRD scans in the reciprocal space, two different scan types have to be 

distinguished:  scans and  scans. Fig 3 depicts these two different scans. It is seen that in case of 

 scans (i.e. only the sample is moved, the detector remains fixed, c.f. fig 1 a), the scan direction is 

parallel to the net planes. In contrast, the scan direction of  scans is perpendicular to the net 

planes. Hence, by carrying out  scans in dependence of  results in a 2-dimensional map of the 

reciprocal space. 

 
 

Fig 3: Schematics of the geometrical arrangement of  scans,  scans, and reciprocal space maps.  
 

Plain geometrical considerations are applied to convert the angles  and  into reciprocal lattice 

vectors kx and kz. Fig. 4 shows the geometrical arrangement in real space (a) and reciprocal space (b). 

Here the difference k-vector K between incident beam k and diffracted beam k’ is decomposed into its 

kx and kz component:  

|𝐾⃗⃗ | = 2|𝑘⃗ | sin𝜃 =  
4𝜋

𝜆
sin 𝜃 [7] 



 

𝐾𝑥 = 𝐾 sin(𝜃 − 𝜔) = 
4𝜋

𝜆
sin𝜃 sin(𝜃 − 𝜔) [8] 

𝐾𝑦 = 𝐾 cos(𝜃 − 𝜔) = 
4𝜋

𝜆
sin𝜃 cos(𝜃 − 𝜔) [9] 

 

 

 
 

Fig 4: Geometry of incoming and outgoing x-ray beams, including the experimental angles  and . 
 

Reciprocal space maps are important to determine the strain status of heteroepitaxial layers.  Fig. 5 

shows two crystal structures of epilayers grown on a substrate with different lattice constants as well 

as their reciprocal space maps. Fig. 5 a illustrates the fully strained case, i.e. the in-plane lattice 

constant of the epilayer a matches the lattice constant of the underlying substrate aS. As a 

consequence, the out-of-plane lattice constant a is elongated with respect to the unstrained case, as 

it will be discussed in the next section. The fact the a|| = aS is seen in the reciprocal space map (Fig 5 

c), as the peaks of substrate and epilayer have the same kx value. Figure 5 b illustrates the fully relaxed 

case. Relaxation processes occur for epilayers with thicknesses exceeding a certain critical thickness as 

a consequence of energy minimization. In this case, dislocations at the interface between substrate 

and epilayer are formed, and the epilayer’s lattice constants will change towards its bulk values a|| = 

a = a0. As a result, the epilayer’s peak is moved in the reciprocal space, i.e. it is no longer located at 

the kx position of the substrate but it is shifted towards lower kx values (corresponding to a larger in-

plane lattice constant). Correspondingly, the out-of plane lattice constant a is not elongated anymore 

– as in the strained case, and the epilayer peak is now located at larger kz values.  

In order to reconvert the (kx,kz) reciprocal lattice vector, one has to recall that the reciprocal lattice 

vector is inversely proportional to the lattice constant (equation 7). Rewriting equation 7 yields: 

𝐾ℎ𝑘𝑙
2 = 

4𝜋2

𝑑ℎ𝑘𝑙
2 = 4𝜋2 (

ℎ2 + 𝑘2

𝑎𝑥
2 +

𝑙2

𝑎𝑧
2) =  𝐾𝑥

2 + 𝐾𝑧
2 [10] 

 

In the third term in equation 10, the equation of dhkl of biaxially strained cubic crystals was employed. 

In the last term in equation 10, Pythagorean theorem is used. Comparing the last two term, and taking 

into account that Kx and kz only depend on ax (= a||) and az (= a) respectively, the following equations 

are derived: 



 

𝑘𝑥
2 = 4𝜋2 (

ℎ2 + 𝑘2

𝑎𝑥
2 ) → 𝑎𝑥 =

2𝜋

𝑘𝑥

√ℎ2 + 𝑘2 [11] 

𝑘𝑧
2 = 4𝜋2 (

𝑙2

𝑎𝑧
2) → 𝑎𝑧 =

2𝜋

𝑘𝑧
𝑙 [12] 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 5: Crystal structures in 
real space and their 
reciprocal space maps of a 
fully strained (a) and a 
fully relaxed epilayer (b) 
grown on a substrate with 
a smaller lattice constant.  

 

Apart from the band gap, the lattice constant of semiconductors is the most important properties. 

Growing semiconductor film on top of substrate with a different lattice constant – the so called 

heteroepitaxy – may cause strain in the epilayer. Figure 6 shows the band gap of several 

semiconductors in dependence of the lattice constant. Such maps are important for device engineers, 

as it illustrates what configurations of epilayer/substrates are allowed to be harnessed in devices. 

 

 
 
 
 
 
 
 
 
 
Fig 6: The “semiconductor 
worls map”, i.e. the lattice 
constant vs. band gap of 
severaly elemental and 
compound semiconductors. 



 

 

 

In order to determine the distortion strain may cause, the theory of elasticity is be applied.  Similar to 

the case of a one-dimensional spring, the basic idea here is that the repulsive force is linear to the 

elongation (Hooke’s law: F = -Cx, where C is the spring constant). However, in case of a three-

dimensional crystal, the quantity C now becomes a tensor. Let us consider a cubic crystal as depicted 

in Fig 7. The crystal has a total of three planes (denoted 1,2, and 3), and forces in three different 

directions (denoted Fx, Fy, and Fz) may act upon each plane. Hence, we have to distinguish between 9 

different cases. Let us define the strain tensor kl (force per unit area) and the stress tensor ij (relative 

displacement of atoms from their equilibrium position). Now Hooke’s law reads: 

𝜎𝑖𝑗 = ∑𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙

𝑘𝑙

 [13] 

 

With Cijkl is the elasticity tensor. Since kl and ij have each 9 components, Cijkl has a total of 81 

components. Fortunately, symmetry considerations strongly reduce the components of Cijkl, and for 

cubic crystals with (0,0,1) orientation, only C11 and C12 are completely independent. Furthermore, by 

calculating the elastic energy of the strained crystal with unstrained lattice constant a0, the following 

relationship between xx == || and zz == e is derived: 

𝜀|| =
𝑎|| − 𝑎0

𝑎0
, 𝜀⊥ =

𝑎⊥ − 𝑎0

𝑎0
 , 𝜀⊥ = −2

𝐶12

𝐶11
𝜀|| [14] 

 

The minus sign in equation 14 dictates that the change of the out-of-plane lattice constant is always 

opposite with respect to the change of the in-plane lattice constant, i.e. a compressive in-plane strain 

(a|| becomes smaller) leads to a larger a and vice versa. As a rule of thumb, the volume of the strained 

crystal is nearly constant, irrespective of the strain. Solving equation 14 for a0 yields: 

𝑎0 =
𝑎⊥ + 𝜈𝑎||

1 + 𝜈
, 𝜈 =  2

𝐶12

𝐶11
 [15] 

 

Silicon (Si) is regarded as on the most important material in our information society, and some historian 

even call the 20th century the Si age, as many devices of every days life are based on Si. Examples that 

stress the importance of Si include integrated circuits in computers, CCD chips found in digital cameras, 

and solar panels that become more and more important for the energy generation. Apart from bulk Si, 

 
 
Fig 7: Sketch of a cubic crystal that is distorted by a force acting on plane 3 in x- y- and z-direction.  



 

many application show better device performance in case if strained Si. For example, strain in the Si 

crystal causes a warping of the band structure, which causes a lower effective electron mass and 

subsequently a higher mobility. In fact, some high-end Si transistors are now based on strained Si. A 

possible avenue to create strain in Si is to grow Si layer on Si0.5Ge0.5 pseudosubstrates.  Some important 

parameters of Si and Ge are listed in table 1. 

Material Band gap  Lattice constant  C11 (dyn/cm2) C12 (dyn/cm2) 

Silicon 1.2 eV (indirect) 5.431 Å 16.6x1011  6.4x1011 

Germanium 0.67 eV (indirect) 5.659 Å 12.6x1011 4.4x1011 

     Table 1: Basic parameters of the semiconductor Si and Ge. 

Table 1 shows that Si and Ge have different lattice constants. Regarding the lattice constant of the     

Si1-xGex alloy, a linear interpolation, the so-called Vegard’s law, may be employed: 

𝑎𝑆𝑖𝐺𝑒 = (𝑎𝐺𝑒 − 𝑎𝑆𝑖) ∙ 𝑥𝐺𝑒 + 𝑎𝑆𝑖 [16] 
 

More sophisticated model employ a bowing parameter to determine the lattice constant of Si1-xGex, 

the so-called Dismukes law: Si1-xGex 

𝑎𝑆𝑖𝐺𝑒 = 𝑎𝑆𝑖 + 0.20 ∙ 𝑥𝐺𝑒 + 0.027 ∙ 𝑥𝐺𝑒
2  [17] 

 

Figure 8 shows a cross-section of a Si0.5Ge0.5 pseuosubstrate, measured by means of transmission 

electron microscopy. It consists of a Si substrate, on which a several µm thick SiGe buffer layer is grown. 

As there is a large lattice mismatch between Si and Ge (a/a = 4.2%, c.f. figure 6), the SiGe buffer layer 

eventually relaxes for thicker layers and higher Ge content.  The buffer layer is grown at optimized 

growth recipes (i.e. the Ge content was gradually increased to the final Ge content of 50%) in order to 

keep the dislocation that are formed during the relaxation process, close to the interface between the 

Si substrate and the SiGe buffer layer.  On top of the buffer layer, a Si0.5Ge0.5 cap layer is grown. Figure 

8 b shows a reciprocal space map (RSM) of such SiGe pseudosubstrate. Three features are seen in the 

map: the Si substrate peak, the graded SiGe buffer layer, and the Si0.5Ge0.5 cap layer. From the (kx,kz) 

coordinates of the SiGe cap layer peak, the in-plane and out-of-plane lattice constants are derived, 

which are subsequently used to determine the Ge content xGe and the strain status || and . 

 
Fig 8: Cross-sectional transmission electron microscopy image of a SiGe pseudosubstrate (a). 
Reciprocal space map of this particular SiGe pseudosubstrates (b). 



 

  

 
Fig . 9: a) Transmission electron microscopy image of a 10-period SiGe/Si multiple quantum well 
structure. The SiGe quantum wells (Si barriers) are the bright (dark) stripes. b) XRD curve of the 
superlattice shown in the TEM image. 
 

Another type of semiconductor heterostructures are multiple quantum wells or superlattices. They 

consist of alternating sequences of layers with different materials, usually called barrier (material with 

a large band gap) and quantum well (material with a small band gap). Such superlattices are extremely 

important for devices, as carriers are confined in the barriers which leads to a higher mobility of 

electrons and hole – beneficial for example in transistor applications , or to a more pronounced 

radiative recombination of electrons and holes for example in laser applications. Such superlattices are 

grown in sophisticated deposition systems, such as molecular beam epitaxy or chemical vapor 

deposition. Figure 9 depicts a transmission electron microscopy image of a 10-period SiGe/Si multiple 

quantum well structure. 

 
 
Fig 10: The scattering factors of a superlattice in real space (a) and its Fourier transform, i.e. its 
XRD curve (b). 

 

XRD 2/ scans are a powerful technique to analyze these superlattices. Let us consider the form factor 

distribution in real space, as illustrated in Fig. 10 a. By carrying out an XRD scan, the measured intensity 

profile is simply the Fourier transform of the form factor distribution. The XRD curve, i.e. the Fourier 

transform (in reciprocal space) of the form factors in real space, is shown in Fig 10 b. The XRD curve 

consists of several features, such as satellite peaks, envelopes, and pendellösung fringes. By employing 

analytical consideration, the following sample parameters are obtained (c.f. Fig 10 b): 



 

 Lattice constant of QW and barrier  K position of central Bragg peak of QW or barrier 

 QW or barrier thickness  Width of QW or barrier envelope 

 Thickness of barrier/QW  Distance between adjacent satellite peaks 

 Number of QW/barrier stacks  Number of pendellösung fringes 

 Total thickness of superlattice  Width of individual satellite peak 

 Average lattice constant of QW and barrier  Position of zero-order satellite peak 

In principle, it is possible to determine all the sample parameter analytically from the equation 

depicted in Fig 10 b. However, nowadays computer programs, based on the dynamical theory, are used 

to simulate the XRD curves and to obtain the structural parameters described above.  

 

Fig 11: Screenshot of the software “MadMax” that is used to simulate XRD curves. 
 

Fig. 11 shows a screenshot of the program “MadMax” that is used to simulate the XRD curve. In the 

bottom window,  the structure – in this case a GaAs/GaAsN multiple quantum well - is inserted. In the 

top window on the left hand side, the investigated reflection, the substrate, the substrate orientation, 

and the scan range are inserted. By punching the “Sim + Exp” button, the window on the right hand 

side pops up, showing the experimental curve (red) and the simulation (green). 

So far, we have only discussed diffraction of x-ray on net planes. However, x-rays may also be suitable 

to carry out diffraction upon the surface and interface of a thin film grown on substrate. This technique 

is called x-ray reflectivity (XRR). In XRR, incoming and outgoing x-ray beam are aligned at very small 

angles ( = 0 – 5°). Figure 12 depicts a XRR curve of a 31 nm thick Bi2Te3 film grown on a Si substrate. 

The inset of Fig. 12 illustrates the geometrical arrangement of a XRR experiment. In principle, one can 

now use the Bragg equation (equation 1) to determine the film thickness. However, unlike for XRD 

experiments that are carried out at large angles, the dispersion of x-ray light with respect to the sample 

material has to be taken into account, i.e. the angle of incidence  is altered to ’ within the sample 



 

(see inset of Fig. 12). It turns out that for electromagnetic radiation with extremely high frequencies 

(such as x-rays), the refractive index is only a tiny fraction smaller than 1 in the order of  = 10-5. 

 

 
 
 
 
 
 
 
 
 
 
Fig 12: an XRR curve of a Bi2Te3 
film grown on s Si substrate. The 
inset illustrates the geometrical 
arrangement of the XRR setup. 

 

Hence the refractive index n of x-ray light reads: 

𝑛 = 1 −  𝛿 [18] 
 

Taking Snell’s law into account, one can easily derive an equation to determine the internal angle ’: 

𝜃′ = cos−1 (
cos 𝜃

1 − 𝛿
) [19] 

 

Hence, due to dispersion, the Bragg equation is slightly modified by a correction term: 

𝑚𝜆 = 2𝑑 sin(𝜃𝑚)√1 −
2𝛿

sin2(𝜃𝑚)
 

[20] 

Solving equation 20 for sin2(m) reads: 

sin2(𝜃𝑚) = 
𝜆2

4𝑑2
𝑚2 + 2𝛿 

[21] 

 

Hence, plotting sin2(m) in dependence of the order of maximum m (c.f. Fig. 12) yields a linear function, 

and from the slope the layer thickness d is obtained. 

 

2. Experimental tasks, part 1 

In part 1 of the experimental section, a SiGe pseudosubstrate will be analyzed by means of XRD. In 

particular, a reciprocal space map will be performed in order to determine the strain status and the Ge 

content of the SiGe pseudosubstrate. Here is the list of tasks: 



 

1. Calculating the Bragg angle  and the tilt angle  for the (004) and the (224) reflections of a 

Si(001) substrate 

2. Mounting the SiGe pseudosubstrate onto the sample holder 

3. Calibrating the z position of the sample 

4. Calibrating , , and   to find the (0,0,4) reflection 

5. Calibrating , , and  to find the (2,2,4) reflection 

6. Writing a job file that carries out the reciprocal space map around the (2,2,4) reflection 

7. Performing the reciprocal space map 

Prior to measuring the sample, it has to be mounted to the samples holder. Fig. 13 shows the mounted 

sample. The sample is attached to a quartz plate by adhesive tape. The quartz plate itself is attached 

to the tilt stage.  

 

 
 
 
 
 
 
 
 
 
 
Fig 13: Sample and quartz plate mounted to the 
tilt stage of the XRD system.  

 

Once the sample is mounted it has to be aligned with respect to the x-ray beam. Figure 14 shows a 

screen shot of the program Diffrac that is used to operate the XRD system. Before the alignment, make 

sure that the detector slit is set to 0.1 mm (label 1 in Fig. 13) to have a high detector resolution, and 

the angles theta and 2theta have to be at the zero position (label 2 and 3 in fig 14). Now the sample 

has to be moved into the x-ray beam by carrying a out a z drive scan (label 4 in figure 14). Punch the 

Start button to carry out the measurement. The sample is now moved towards you from outside the 

direct beam into the x-ray beam. As a result, the intensity is high at low z positions and it drops to zero 

once the sample hits the x-ray beam. Determine the position where the intensity is 50% and set the z 

position to this value. 

In a second step, move the angle theta (angle of the sample, equivalent to ) and 2theta (angle of the 

detector) to the nominal positions to find the (004) reflection. Now make a  scan, i.e. a rocking curve 

(label 3 in Fig. 14) for a range of 2° with a resolution of 0.002° to find the (004) reflection. Set  to the 

value, where the (004) peak is found. Now make a Chi scan to maximize the signal. In the third step, 

move theta and 2theta to find the (224) reflection. Again, make a rocking curve for a range of 2° with 

a resolution of 0.002° to find the peak. After that carry out a phi scan to maximize the signal. 



 

 

Fig 14: Screenshot of the Diffrac program that operates the Bruker D8 XRD system. 
 

Once the angle , 2, Chi and Phi are set, a job file is created to carry out the reciprocal space map. 

The job file will be written by the supervisor. In the job file, the ranges in  and /2 will be defined 

(c.f. figure 3): 

Type of Scan Relative start value Relative end value Resolution 

 scan -0.5° +0.5° 0.02° 

/2 scan -2° +1° 0.02° 

 
The scan will take 20 minutes. When finished the supervisor will convert the data to a text file that 

will be used by the students for the analysis.  

3. Experimental tasks, part 2:  

In part 2, a Si/SiGe superlattice will be analyzed by means of a 2/ XRD scan. Here is a list of tasks: 

1. Mounting the Si/SiGe superlattice onto the sample holder 

2. Calibrating the z position of the sample 

3. Calibrating , , and   to find the (0,0,4) reflection 

4. Carrying out a 2/ scan for a range 2 = 66°- 71° with a resolution of 0.002°  

The mounting of the sample is similar to the experimental section 1. The scan will be carried out in 

continuous mode (button 7 in Fig. 14) for approximately 1 hour. 



 

4. Experimental tasks, part 3 

In part 3, a XRR measurement of a Bi1Te1 epilayer grown on a Si substrate is carried out: 

1. Mounting the Bi1Te1 sample onto the holder 

2. Calibrating the z position of the sample with detector slit of 0.1 mm 

3. Carrying out a rocking curve in a range -1° - +1° with a resolution of 0.01° 

4. Setting the  value to the maximum 

5. Carrying out a 2/ scan in a range -0.2° – +5° with a resolution of 0.005° 

 

5. Analyzing the data of part 1 

The analysis of the data include: 

1. Converting the raw data into reciprocal lattice vectors by means of the conversion_v2 code 

2. Graphical visualization of the converted data in  reciprocal space map 

3. Determining the (kx,kz) values of the SiGe cap layer 

4. Calculating the Ge content and the strain status || and  of the SiGe cap layer 

 

Fig. 15: Screenshot of the program “conversion_v2.m” that is employed to calculated the 
reciprocal lattice vectors from the raw data file. 

 



 

Concerning task 1, converting the raw data into reciprocal lattice vectors (equation 8 and 9), the 
students may use a self-written code “conversion_v2.m. This code runs under Matlab or Freemat (free 
program fully compatible to Matlab, it can be downloaded at http://freemat.sourceforge.net). A 
screenshot of the code is seen in Fig. 15. Mandatory to operate the code is to plug in several 

parameters of the reciprocal space map, i.e. the file name, the values of  and 2, as well as the ranges 

of  and /2. The code writes a text file “Ausgabe_q” that contains three columns of data (k||, k, 
intensity).  
 

Now the text file “Ausgabe_q” has be visualized, i.e. a two-dimensional contour plot (kx, ky, I) has to be 

created. An example is depicted in figure 8b. The programs are Origin or Matlab are quite useful here. 

Once the contour plot is done, determine the kx and ky coordinates of the SiGe cap layer peak. 

Determine the in-plane and out-of-plane lattice constants of the SiGe cap layer. By employing the 

equations described above, determine the Ge content and the strain status || and . For the latter 

two quantities, analytical calculations may be harnessed for a rough estimation or numerical methods 

may be employed for a precise determination. 

 

6. Analyzing the data of part 2 

Once the measurement of the XRD curve is finished, convert the raw file into a text file by means of 

the Leptos program. The text file contains a data row of two colums (2, I). Concert the 2 values 

into reciprocal lattice vector (equation 9) and plot the intensity with respect to kz. Determine the 

following parameters analytically: 

1. Thickness D = dSi + dSiGe of the SiGe/Si stack 

2. Number of SiGe/Si periods 

Besides the analytical calculations, the entire structure parameters will be analyzed by means of the 

simulation software “MadMax”. Here is the list of tasks: 

1. Reconverting the experimental XRD data file from (2, I) to (,I) 

2. Shifting the experimental data file, so that the substrate peak is at  = 0° 

3. Normalizing the Intensity to Imax = 1 

4. Renaming the experimental data file to “filename.exp” 

5. Inserting the SiGe/Si superlattice structure into MadMax (c.f. figure 11), starting with a guess 

6. Saving the structure file as “filename.lay” in the same folder as the experimental file 

7. Running the simulation by punching the “Sim + Exp” button 

8. Changing the Si and SiGe thicknesses and the Si content to find a good agreement with the 

experimental data curve 

Once, a good agreement between the experimental data and the simulation is found, plot the two 

curves in one graph (“MadMax” creates a file “filename.sim with the simulated XRD curve as an ASCII 

text).  

 

 

http://freemat.sourceforge.net/


 

7. Analyzing the data of part 3 

The final goal of part 3 is to determine the thickness of the Bi1Te1 epilayer. The following tasks need 

to be done: 

1. Converting the raw data into a text file (2, I) in the Leptos program  

2. Labelling the maxima according to the order m. 

3. Determining the angular position  m of each maximum 

4. Plotting sin2(m) in dependence of m2 

5. Carrying out a linear regression to determine the slope. 

6. Determine the thickness from the slope and the value  (equation 21). 

 

 

 


