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Abstract

In this thesis, an ab initio theoretical framework for the investigation of spin excita-

tions and the electron-magnon scattering is developed within many-body perturba-

tion theory and implemented in the full-potential linearized augmented-plane-wave

method. The spin excitations, including single-particle Stoner excitations and col-

lective spin waves, are accessible through the magnetic response function, which is

obtained by the solution of a Bethe-Salpeter equation employing four-point func-

tions. These four-point functions are represented in a Wannier-function basis, which

allows to exploit the short-range behavior of the screened interaction in metallic sys-

tems by truncating the matrices in real space. The spin excitation spectrum of ferro-

magnetic materials contains an acoustic magnon mode whose energy, in the absence

of spin-orbit coupling, vanishes in the long-wavelength limit as a consequence of the

spontaneously broken spin-rotation symmetry in these materials according to the

Goldstone theorem. However, in numerical realizations of the magnetic response

function the acoustic magnon mode exhibits a small but finite gap in the Goldstone-

mode limit. We investigate this violation of the Goldstone theorem and present an

approach that implements the magnetic response function employing the properly

renormalized Green function instead of the Kohn-Sham one. This much more ex-

pensive approach shows a substantial reduction of the gap error. In addition, we

discuss a correction scheme motivated by the one-band Hubbard model that cures

the fundamental inconsistency of using the Kohn-Sham Green function by adjusting

the exchange splitting. We present corrected magnon spectra for the elementary fer-

romagnets iron, cobalt, and nickel. We then employ the T-matrix approach for the

description of the electron-magnon interaction within the GT approximation, which

can be combined with the GW approximation without the need of double-counting

corrections. The multiple-scattering T matrix is part of the four-point magnetic re-

sponse function and describes the correlated propagation of electron-hole pairs with

opposite spins from which the collective spin excitations arise. We apply the GT
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approximation to Fe, Co, and Ni and present renormalized spectral functions. The

GT approximation leads to a pronounced spin-dependent lifetime broadening of the

quasiparticle states to the extent that the quasiparticle character is virtually lost in

certain energy regions. In iron, the spectral functions exhibit an additional quasipar-

ticle peak indicating the emergence of a new quasiparticle. We discuss the features

of this quasiparticle state that forms out of a superposition of single-particle and

magnon excitations. In addition, we find kink structures in the quasiparticle disper-

sion of free-electron-like bands of cobalt and nickel.
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Zusammenfassung

In dieser Arbeit werden theoretische Verfahren für die ab initio Untersuchung von

Spinanregungen und der Elektron-Magnon-Streuung innerhalb der Vielteilchenstö-

rungstheorie entwickelt und in der full-potential linearized augmented-plane-wave Me-

thode implementiert. Die Spinanregungen, einschließlich der Einteilchen-Stoner-

Anregungen und kollektiver Spinwellen, sind durch die magnetische Antwortsfunk-

tion zugänglich, die durch das Lösen einer Bethe-Salpeter-Gleichung unter Verwen-

dung von Vierpunktsfunktionen gewonnen wird. Diese Vierpunktsfunktionen wer-

den in einer Wannierfunktionsbasis dargestellt, die es erlaubt das kurzreichweitige

Verhalten der abgeschirmten Wechselwirkung in metallischen Systemen auszunut-

zen, indem die Matrizen im Realraum begrenzt werden. Das Spinanregungsspek-

trum von ferromagnetischen Materialien beinhaltet eine akustische Magnonenmode,

deren Energie unter Vernachlässigung der Spin-Bahn-Kopplung im Grenzfall unend-

lich großer Wellenlängen verschwindet. Entsprechend des Goldstone-Theorems ist

dies eine Konsequenz der spontan gebrochenen Spinrotationssymmetrie in diesen

Materialien. In der numerischen Realisierung der magnetischen Antwortsfunktion

beinhaltet die akustische Magnonenmode jedoch eine kleine aber endliche Lücke

in der Goldstone-Mode. Wir untersuchen die Verletzung des Goldstone-Theorems

und präsentieren einen Ansatz, der die magnetische Antwortsfunktion unter Ver-

wendung der geeignet renormalisierten Greensfunktion anstelle der Kohn-Sham-

Greensfunktion implementiert. Dieser wesentlich aufwendigere Ansatz zeigt eine

substantielle Reduktion des Lückenfehlers. Darüber hinaus diskutieren wir ein Kor-

rekturschema, motiviert vom Ein-Band-Hubbard-Modell, das die fundamentale In-

konsistenz der Verwendung der Kohn-Sham-Greensfunktion durch das Anpassen

der Austauschaufspaltung heilt. Wir zeigen korrigierte Magnonspektren für die ele-

mentaren Ferromagneten Eisen, Kobalt und Nickel. Wir verwenden dann den T-

Matrix-Ansatz für die Beschreibung der Elektron-Magnon-Wechselwirkung in der

GT-Näherung, die additiv mit der GW-Näherung kombiniert werden kann ohne
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die Notwendigkeit von Doppelzählkorrekturen. Die T-Matrix ist Teil der magneti-

schen Vierpunkt-Antwortsfunktion und beschreibt die korrelierte Propagation von

Elektron-Loch-Paaren mit entgegengesetztem Spin von der die kollektiven Spinan-

regungen herrühren. Wir wenden die GT-Näherung auf Eisen, Kobalt und Nickel an

und präsentieren renormalisierte Spektralfunktionen. Die GT-Näherung führt zu ei-

ner ausgeprägten spin-abhängigen Lebensdauerverbreiterung der Quasiteilchenzu-

stände, was dazu führen kann, dass der Quasiteilchencharakter in bestimmten Ener-

giebereichen praktisch verloren geht. In Eisen zeigen die Spektralfunktionen einen

zusätzlichen Quasiteilchenpeak, der die Entstehung eines neuen Quasiteilchens an-

zeigt. Wir diskutieren die Eigenschaften dieses Quasiteilchenzustands, der sich aus

einer Überlagerung von Einteilchen- und Magnonanregungen ergibt. Darüber hin-

aus finden wir in der Quasiteilchendispersion von Bändern in Kobalt und Nickel,

die ähnlich zu freien Elektronen dispergieren, Knickstellenstrukturen.
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1. Introduction

Nowadays, information technology and its applications affect almost all aspects of

human life, and it is expected to become even more important with the advent of

big data concepts, cloud computing, and the internet of things. Information technol-

ogy is based on three basic operations: the storage, the processing, and the transfer

of information [1, 2]. Progress in information technology is particularly propelled

by fundamental research on novel physical concepts and emerging materials. For

example, the discovery of the giant magnetoresistance (GMR) [3,4] has been a break-

through for storing information magnetically. The GMR effect was measured first in

layered magnetic structures consisting of iron and chromium layers independently

by Albert Fert and Peter Grünberg, both awarded with the Nobel prize in physics in

2007. Grünberg demonstrated in his Nobel lecture entitled From spin waves to giant

magnetoresistance and beyond [5] the importance of the concept of spin waves for the

understanding of layered magnetic structures. It was the measurement of the spin-

wave spectrum by means of Brillouin light scattering (BLS) experiments [6] that, for

the first time, gave evidence for an antiferromagnetic interlayer exchange coupling,

which is important for the GMR effect. The discovery of the GMR effect, in turn, has

opened up the possibility for a tremendous increase of the data storage density on a

hard disk drive (HDD).

Traditionally, nonvolatile memory and logic devices for information process-

ing are realized by different technologies. While information is typically stored

in magnetic domains, information processing nowadays relies practically always

on charge-based switching devices among which the complementary metal-oxide-

semiconductor (CMOS) technology is the most successful one. Charge-based switch-

ing devices, e.g., field-effect transistors differentiate between a logic 0 and 1 by charg-

ing and discharging the transistor gate, which regulates the source-drain conduc-

1



1. Introduction

tivity. Consequently, the switching capabilities of a charge-based device requires

charge transport, which is accompanied by fundamental limits concerning the mini-

mum switching energy and the switching speed [7]. There are attempts to overcome

these fundamental limits by replacing the electron as information carrier. Recently,

magnons, which are the quanta of collective spin excitations, have been proposed as

information carrier for a logic device [8, 9]. The proposed magnon transistor is an

all-magnon device entirely avoiding electron transport. Such an all-magnon device

has the advantage that the waste heat generation can be drastically reduced, and its

size can potentially be scaled down to the sub-ten nanometer scale [8,10] while being

capable of ultra-fast data processing reaching the THz range [8, 11–13].

Clearly, the understanding of spin waves is essential for fundamental research

and application in technology. Spin waves can be studied experimentally, e.g., by

the Brillouin light scattering technique, which allows to extract information about

the magnetic properties with spatial and time resolution [14]. Neutron scattering ex-

periments can be used to probe bulk properties due to the high penetration depth

of the neutron. While neutron diffraction allows to extract information about the

magnetic structure of a solid, inelastic neutron scattering (INS) techniques [15] are

able to measure the momentum and energy resolved spin-wave excitation spectrum.

INS experiments measure the scattering cross section of the neutrons, which can be

related to the spectral function of the magnetic response function of linear response

theory [16, 17]. The magnetic response function accounts for the dynamical linear

response of a magnetic material due to an external perturbing B field. The mag-

netic response function provides information about the complete magnetic excitation

spectrum and is therefore the central quantity of interest to study spin excitations

theoretically.

In the past 30 years, the density-functional theory (DFT) [18] in the Kohn-Sham

(KS) formulation [19], employing a local-spin-density approximation (LSDA) or a

semilocal generalized gradient approximation (GGA) for the unknown exchange-

correlation functional, has developed into a powerful ab initio approach for the de-

scription of ground-state properties of materials. Even though excited-state proper-

ties are beyond the scope of DFT, total-energy calculations allow to obtain magnon

excitation energies for systems with localized moments employing an adiabatic treat-

ment that separates the fast motion of the electrons and the slow motion of the mag-

netic moments [20–24]. In the adiabatic treatment, the magnon excitation energy is

related to the magnetic ground-state energy of a system whose spins are aligned in

2



a frozen spin-wave configuration, employing the constraint density-functional the-

ory [25]. However, the adiabatic treatment is strictly speaking only applicable to sys-

tems with rather localized moments and it is not a good approximation for itinerant

magnetic materials.

Going beyond the adiabatic treatment is a non-trivial task. More sophisticated ap-

proaches treat the magnetic response for bulk systems, surfaces, or adatoms on sur-

faces within the multi-band Hubbard model with effective tight-binding parameters

[26–30], which was recently extended by the inclusion of spin-orbit coupling [31,32].

First-principles calculations of the magnetic response function that take into account

realistic band structures, wave functions, and Coulomb interactions are scarce in the

literature as they demand a tremendous implementational and computational effort.

Yet, these treatments give the most reliable and most precise results for spin-wave ex-

citations. Only recently, the first ab initio calculations of the magnetic response func-

tion have been published. Savrasov [33], Buczek et al. [34–37], Lounis et al. [38–41],

and Rousseau et al. [42] calculated the magnetic response function within the time-

dependent density-functional theory (TDDFT). Alternatively, the magnetic response

function can be treated from first principles within the many-body perturbation the-

ory (MBPT). The first full ab initio study of spin-wave spectra of the bulk transi-

tion metals within MBPT was published by Şaşıoğlu et al. [43]. In contrast to ear-

lier works [44, 45] that employed model potentials, Şaşıoğlu et al. [43] calculated the

screened interaction, which mediates the correlation between the electron-hole pairs,

explicitly from the random-phase approximation (RPA). The short spatial range of

the correlation in the partially filled 3d orbitals can be exploited by employing a

projection onto maximally localized Wannier functions [46, 47] for an efficient treat-

ment of the four-point multiple-scattering T matrix describing the electron-hole pair

interaction. The implementation is based on the all-electron full-potential linearized-

augmented-planewave (FLAPW) method [48–50], one of the most precise electronic

structure methods for crystalline solids. The FLAPW method treats core and valence

electrons on an equal footing, avoids any shape approximation of the charge density

or the potential, and is applicable to all elements of the periodic table.

The magnetic response function calculated within TDDFT or MBPT allows to ac-

cess single-particle excitations as well as collective spin-wave excitations simultane-

ously. The spin excitation lifetimes, which result from the mixing of single-particle

and collective excitations, are accessible in these approaches as well. However, it

has turned out that a problem arises related to the acoustic magnon mode. In the

3



1. Introduction

absence of spin-orbit coupling, the acoustic magnon mode can be understood as the

consequence of the Goldstone theorem, which requires that the magnon excitation

energy vanishes in the long-wavelength limit due to the spontaneously broken spin-

rotation symmetry in collinear magnetic systems. Usually, in ab initio calculations of

the magnetic response function employing either TDDFT or MBPT a gap error occurs

in the magnon dispersion, i.e., the magnon excitation energy does not vanish in the

long-wavelength limit numerically violating the Goldstone-mode condition. While

in TDDFT the origin of the violation is attributed to the numerical realization of the

magnetic response function [38, 42], the violation of the Goldstone-mode condition

in the MBPT is more fundamental.

In this thesis, we have investigated the violation of the Goldstone-mode condition

in MBPT [51]. We found that the fundamental inconsistency which arises in MBPT

calculations of the magnetic response function is related to the use of the Kohn-Sham

Green function. We have lifted this inconsistency by employing the properly renor-

malized Green function within the magnetic response function calculation. Further-

more, to bypass the computationally much more expensive approach of calculating

the self-consistently renormalized Green function, we have proposed a correction

scheme for the Kohn-Sham Green function for ferromagnetic materials that cures the

Goldstone violation and opens up the possibility for efficient ab initio MBPT calcula-

tions of spin excitations and, in particular, their coupling to the electronic excitations.

The interaction of electrons and spin excitations plays a fundamental role for a

wide variety of phenomena. For example, in spintronics spin-polarized currents

depolarize due to their interaction with magnons [52], the electron scattering by

magnons is responsible for the characteristic temperature dependence of the tun-

neling magnetoresistance (TMR) [53], and in nanospintronics the spin and charge

currents that flow through nanostructures deposited on surfaces can be strongly af-

fected by the electron-magnon interaction [54–57]. Recent angle-resolved photoe-

mission spectroscopy (ARPES) experiments on an iron surface state [58] and a nickel

bulk state [59] found a kink structure in the quasiparticle band dispersion, which was

attributed to the coupling of electrons to spin excitations. These findings together

with further experiments on the 3d transition metals [60–64] has revived the scien-

tific interest to understand correlation effects in bulk transition metals from a theoret-

ical point of view, for example by employing dynamical mean-field theory (DMFT)

within the LDA+DMFT approach [62–66] or diagrammatic techniques [67–70].

In this thesis we have proposed a self-energy correction within many-body per-
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turbation theory that explicitly accounts for spin-flip excitations and can be com-

bined with the GW approximation [71] without the need for a double-counting cor-

rection. This self-energy relies on the multiple-scattering T matrix and is termed GT

self-energy. The GT self-energy has been implemented in the SPEX code [72], which

is a FLAPW implementation of the GW approach. We have illustrated the capabil-

ities of the GT self-energy by investigating the bulk elementary ferromagnets iron,

cobalt, and nickel. The coupling of electrons to spin excitations leads to a pronounced

spin-dependent lifetime broadening of the quasiparticle states. The lifetime broad-

ening, which is particularly strong in iron, can even lead to a loss of quasiparticle

resonances in the spectrum. In iron, a new quasiparticle emerges from the coupling

of electrons to magnons that leaves its footprint in the electronic spectral function as

an additional quasiparticle peak. A similar effect, though less pronounced, is found

in cobalt and nickel. In these materials, the electron-magnon scattering gives rise

to an anomalous quasiparticle dispersion behavior of free-electron-like bands in the

vicinity of the Fermi level.

The thesis is organized as follows. Chapter 2 introduces the many-body pertur-

bation theory and the density-functional theory as the theoretical foundations of this

thesis. The acoustic magnon mode is discussed in Chapter 3 in terms of the mag-

netic response function within many-body perturbation theory. The derivation and

the implementation of the magnetic response function are presented. The coupling

of electrons to spin excitations is investigated in Chapter 4 in terms of the GT ap-

proximation. The GT self-energy is derived in Section 4.2, and the implementational

details are shown in Section 4.3. Results of the GT self-energy calculations applied

to iron, cobalt, and nickel are presented in Section 4.7. Finally, the conclusions in

Chapter 5 summarize our findings.
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2. Theoretical Foundations

In the last decades, numerical first-principles calculations of material properties have

become increasingly important in the fields of theoretical condensed-matter physics,

quantum chemistry, and computational material science. In these approaches, one

tries to solve the Schrödinger equation with the many-body Hamiltonian that char-

acterizes the solid-state system. The many-body Hamiltonian is composed of the

kinetic energy of the electrons, the kinetic energy of the atomic nuclei, the electron-

electron interaction, the nucleus-nucleus interaction, and the electron-nucleus inter-

action. The many-body Hamiltonian is too complex to allow a straightforward solu-

tion of the Schrödinger equation. However, the problem can be drastically simplified

by the fact that the electron mass is by orders of magnitude smaller than the nuclear

mass. Therefore, the electrons react almost instantaneously to a change of the nu-

clear positions and, as a result, the electrons can be assumed in their many-body

ground state for a given set of nuclear positions. The Born-Oppenheimer approxi-

mation [73] exploits the large difference between the electron and nuclear mass to

decouple the electron motion from that of the nuclei. As a consequence, the quest of

solving the Schrödinger equation with the many-body Hamiltonian of the electrons

and the nuclei simplifies to a Schrödinger equation with a many-electron Hamilto-

nian in which the nuclear positions appear merely as parameters. Still, the problem

cannot be solved exactly and approximate approaches are required. The many-body

perturbation theory is an approach to find an approximate solution to the interacting

system in terms of the Green function that allows to access excited state properties.

The Green function is obtained as the solution of a Dyson equation to an energy-

dependent and nonlocal potential that plays the role of a self-energy. The self-energy

accounts for exchange and correlation effects within the system. Although the exact

form of the self-energy is unknown, it can be approximated in terms of an expansion

7



2. Theoretical Foundations

in powers of the interaction between the particles of the system [71,74]. The density-

functional theory is another approach, which uses the ground-state density as its

basic variable. In the Kohn-Sham formalism the density-functional theory reduces

the calculation of ground-state properties to the iterative solution of single-particle

Schrödinger-like equations [75, 76]. In the present work, density-functional theory

calculations serve as a starting point for subsequent many-body perturbation theory

calculations. We introduce both theories, the many-body perturbation theory in Sec-

tion 2.1 and the density-functional theory in Section 2.2. Our implementation relies

on the full-potential linearized augmented-plane-wave (FLAPW) method, which is

introduced in Section 2.3.

2.1 Many-Body Perturbation Theory

The many-body perturbation theory allows to determine excitation spectra in solids

from first principles. The excitation spectrum of a solid is accessible via the elec-

tronic Green function, which is the solution of a Dyson equation to a nonlocal and

frequency-dependent self-energy. The self-energy is a central ingredient to the many-

body perturbation theory, it contains in principle all exchange and correlation ef-

fects. In practice, however, the self-energy must be approximated. The formulation

of many-body perturbation theory in terms of the Hedin equations allows the self-

energy to be expanded in terms of a screened Coulomb interaction. The screened

Coulomb interaction takes into account dynamical screening effects due to charge

fluctuations. The first-order expansion of the self-energy leads to the GW approxi-

mation. For the introduction of the many-body perturbation theory the Hamiltonian

written in first quantization is transformed into the second quantization. The Green

function is defined in Section 2.1.1 and with the Hamiltonian in second quantiza-

tion the Green function’s equation of motion, which leads to the Hedin equations, is

derived in Section 2.1.2.

The electronic structure theory is based on the Born-Oppenheimer approximation

[73], which decouples the electrons from the nuclei. The fundamental Hamiltonian

of the electronic structure theory, written in atomic units, has the form

H =
N

Â
i=1

h(ri) +
1
2

N

Â
i 6= j

v(ri, r j) (2.1.1)

8



2.1. Many-Body Perturbation Theory

with the single-particle Hamiltonian

h(ri) = �1
2
r2

ri
+ vext(ri), (2.1.2)

where vext(r) is the external potential created by the atomic nuclei and

v(ri, r j) =
1

|ri � r j| (2.1.3)

is the Coulomb interaction between the electrons. The many-electron wave function

F(r1, r2, . . . , rN) is the ground-state eigenfunction of the Hamiltonian (2.1.1), i.e., the

wave function is formally the solution of the Schrödinger equation

HF(r1, r2, . . . , rN) = EF(r1, r2, . . . , rN) (2.1.4)

with the total energy E. Due to the Pauli exclusion principle the wave function has

to be anti-symmetric under the exchange of two electron positions, i.e.,

F(r1, r2, . . . , rN) = �F(r2, r1, . . . , rN). (2.1.5)

The Schrödinger equation of a non-interacting single-particle Hamiltonian of the

form of Eq. (2.1.2) can be solved exactly and its solutions are the single-particle wave

functions denoted by �i(r). The corresponding many-electron wave function of the

non-interacting system can be written as the sum over all possible permutations of

the single-particle wave functions

F(r1, . . . , rN) =
1

N! Â
P
(�1)P�i1(rP(1))�i2(rP(2)) · · ·�iN (rP(N)), (2.1.6)

where P(i) gives the rearrangement with respect to a permutation P . The sum-

mation over all permutations P ensures that the resulting wave function is anti-

symmetric as required by the Pauli exclusion principle (2.1.5). The expression (2.1.6)

is known as the Slater determinant of a non-interacting system [77]. If the Slater

determinant is used as a wave-function ansatz to solve the Schrödinger equation

(2.1.4) with the Hamiltonian (2.1.1), this leads to the Hartree-Fock approach [78].

Other wave-function based approaches, for example, the configuration interaction,

the Moeller-Plesset perturbation theory [79], or the coupled-cluster methods [80], go

beyond the Hartree-Fock approach by using linear combinations of Slater determi-

nants as an approximation to the many-electron wave function.

9



2. Theoretical Foundations

In the present thesis, however, the many-body perturbation theory, which relies

on the Green function method, is employed. The Green function approach of many-

body perturbation theory makes use of a formulation in second quantization. The

second quantization is a formulation that describes the many-electron state in the

occupation number representation. The state vector in the occupation number rep-

resentation

|n1n2 . . . nNi (2.1.7)

counts the number of particles in each state, i.e., the state vector (2.1.7) means that

there are n1 particles in state 1, n2 particles in state 2, and so on. In an electron

system the Pauli exclusion principle restricts the occupation number for each state

i to ni = 0, 1. The occupation number representation sets up a complete and nor-

malized basis set. The electron creation a†⌫ and annihilation a⌫ operators of second

quantization increase and lower the occupation number of the ⌫-th state by one elec-

tron, respectively. The electron creation and annihilation operators satisfy the anti-

commutation relations

[a⌫ , a⌫0 ]+ = [a†⌫ , a†⌫0 ]+ = 0, (2.1.8)

and

[a⌫ , a†⌫0 ]+ = �⌫,⌫0 , (2.1.9)

where ⌫ and ⌫0 denote full sets of quantum numbers to describe uniquely the elec-

tronic states. For example, in lattice-periodic systems without spin-orbit coupling an

eigenstate'↵km can be characterized by its Bloch momentum k, its band label m, and

a spin ↵ according to the Bloch theorem [81]. The operators a↵ †
km and a↵km create and

destroy an electron in the state ⌫ = km↵, respectively. It is advantageous to use a

formulation in terms of field operators †
↵(r) and ↵(r), which create and destroy an

electron with spin ↵ at a particular point in space, respectively. The field operators

are related to the creation and annihilation operators by

 †
↵(r) = Â

km
a↵ †

km'
↵⇤
km(r), (2.1.10)

and

 ↵(r) = Â
km
'↵km(r)a↵km, (2.1.11)

where '↵⇤km(r) = hkm↵|ri. The field operators fulfill anti-commutation relations of

the same form as (2.1.8) and (2.1.9). The Hamiltonian in second quantization takes

10



2.1. Many-Body Perturbation Theory

the form

H = Â
↵

Z
dr †

↵(r)h(r) ↵(r) +
1
2 Â
↵,�

Z
dr dr0 †

↵(r) 
†
�(r

0)v(r, r0) �(r0) ↵(r),

(2.1.12)

where the ordering of the field operators is important to ensure the Hamiltonian to

be Hermitian. In second quantization the fields turn into operator quantities, while

the one-particle Hamiltonian and the interaction among the particles turn into com-

plex functions. In principle, the Hamiltonian (2.1.12) can be used in the Schrödinger

equation (2.1.4) to solve for the many-electron wave function using the so-called

Schrödinger representation of quantum mechanics. In contrast, many-body pertur-

bation theory is based on the Green function technique, which makes a treatment

within the Heisenberg representation more convenient. In the Heisenberg represen-

tation the dynamics of the system is incorporated into the operators instead of the

many-electron wave functions, i.e., while the wave functions are time-independent,

the operators take the time dependence. For example the field operator defined in

the Heisenberg representation has a time dependence of the form

 ↵(rt) = eiHt ↵(r)e�iHt. (2.1.13)

Instead of the Schrödinger equation one has to solve the equation of motion for the

operators in the Heisenberg representation, e.g., the field operator obeys the equation

of motion

i∂t ↵(rt) = [ ↵(rt), H]�. (2.1.14)

The many-body perturbation theory allows to calculate ground-state and excited-

state properties. The calculation of these properties, for example, the charge or spin

density, usually involves the calculation of expectation values of one-particle oper-

ators. One-particle operators, in turn, correspond to combinations of creation and

annihilation field operators. The Green function can be written as an expectation

value of a creation and annihilation operator, too.

2.1.1 Green Function

The one-particle Green function is defined by the equation

G↵�(rt, r0t0) = �ihT  ↵(rt) †
�(r

0t0)i, (2.1.15)

11



2. Theoretical Foundations

where T is the time-ordering operator, which ensures that the field operators are or-

dered such that their time arguments increase from right to left, and h. . .i denotes

the expectation value with respect to the ground state of the interacting system. The

Green function is the probability amplitude for the propagation of an additional elec-

tron (t > t0) or an additional hole (t0 > t) in the many-body system described by the

Hamiltonian (2.1.12). The Green function is a very important quantity because ex-

pectation values of any one-particle operator can be written as a known functional

of the Green function. For example, the electron density can be expressed in terms of

the Green function

n(rt) = �i Â
↵

G↵↵(rt, rt + ⌘), (2.1.16)

where ⌘ ! 0+ is a positive infinitesimal number. In addition, Galitskii and Migdal

[82, 83] showed that the ground-state total energy of a system is determined by the

Green function as well. Furthermore, the Green function contains information about

the excited states, i.e., it carries information about the (N ± 1)-electron system. The

excitation spectrum of the system is accessible via the Lehmann representation [84] of

the Green function. Provided that the Hamiltonian is not explicitly time dependent,

the Green function depends only on the time difference ⌧ = t � t0 of the field opera-

tor’s action. The ⌫-th state |N ± 1,⌫i of the (N ± 1)-electron system is an eigenstate

of the full Hamiltonian, i.e., H|N ± 1,⌫i = EN±1
⌫ |N ± 1,⌫i. The Green function’s

Lehmann representation results from inserting the closure relation of the (N ± 1)-

electron system

Â
⌫

|N ± 1,⌫ihN ± 1,⌫| = 1 (2.1.17)

between the field operators of the Green function (2.1.15) and applying a Fourier

transformation to the frequency domain

G↵�(r, r0;!) = Â
⌫

hN, 0| ↵(r)|N + 1,⌫ihN + 1,⌫| †
�(r

0)|N, 0i
!� (EN+1

⌫ � EN) + i⌘

+
hN, 0| †

�(r
0)|N � 1,⌫ihN � 1,⌫| ↵(r)|N, 0i
!� (EN � EN�1

⌫ )� i⌘
, (2.1.18)

where EN is the energy of the N-electron system. Thus, the excitation energies of

the (N ± 1)-electron system are the poles of the Green function in the Lehmann rep-

resentation. As the Green function contains the excitation energies of the (N ± 1)-

electron system, it is related to (inverse) photoemission spectroscopy experiment.

In a system of non-interacting electrons, the amplitudes hN � 1,⌫| ↵(r)|N, 0i and

12



2.1. Many-Body Perturbation Theory

hN + 1,⌫| †
�(r

0)|N, 0i correspond to the occupied and unoccupied single-particle

wave functions, respectively.

2.1.2 Hedin Equations

The Green function can be obtained as the solution of its equation of motion

i∂tG↵�(rt, r0t0) = �(r � r0)�(t � t0)�↵� + h(r)G↵�(rt, r0t0)

� i Â
�

Z
dr00 v(r, r00)hT  †

�(r
00t) �(r00t) ↵(rt) †

�(r
0t0)i, (2.1.19)

which results from the equation of motion of the field operator (2.1.14). However, a

straightforward solution of the one-particle Green function’s equation of motion is

not possible because the equation of motion leads to a hierarchy of Green functions of

higher order, i.e., the one-particle Green function depends on the two-particle Green

function

G(2)
↵���(12, 34) = �hT  ↵(1) �(2) †

�(4) 
†
�(3)i, (2.1.20)

which in turn depends on the three-particle Green function, and so on. Here and

in the following, we abbreviate the space and time arguments by 1 = r1t1, and 1+

indicates that the time argument is increased by an infinitesimal positive amount

⌘, i.e., 1+ = r1t1 + ⌘. The equation of motion of the one-particle Green function

leads to a hierarchy of equations of Green functions of ever increasing order. For-

mally, the hierarchy of equations can be truncated by relating the two-particle Green

function to a functional derivative of the one-particle Green function, which leads

to the Hedin equations. The Hedin equations are a set of five integro-differential

equations that solve the many-body problem in principle exactly. For its derivation

an auxiliary external field Uext(1) is incorporated into the one-particle Hamiltonian

h(1) ! h(1) + Uext(1). The external field acts as an external perturbation. The limit

Uext(1) ! 0 is taken at the end of the derivation. The introduction of such an external

perturbation allows to employ the Schwinger functional derivative technique [85].

The functional derivative of the Green function with respect to the external pertur-

bation is connected to the two-particle Green function [85]

�G↵�(12)
�Uext(3)

����
Uext=0

= Â
�

h
G↵�(12)G��(33+)� G(2)

↵���(13, 23+)
i

, (2.1.21)
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2. Theoretical Foundations

which turns Eq. (2.1.19) into

i∂tG↵�(12) = �(12)�↵� + h0(1)G↵�(12) +Â
�

Z
d3 S↵�(13)G��(32), (2.1.22)

where

h0(1) = h(1) + Uext(1) + vH(1), (2.1.23)

is the Hartree Hamiltonian with the Hartree potential

vH(1) = �i Â
�

Z
d2 v(12)G��(22+), (2.1.24)

and

S↵�(12) = i Â
�

Z
d3 d4 v(1+3)

�G↵�(14)
�Uext(3)

G�1
�� (42) (2.1.25)

is the nonlocal and time-dependent self-energy, which accounts for the interaction of

a particle with the rest of the system. The self-energy vanishes in a non-interacting

system and the corresponding solution of the Green function’s equation of motion

(2.1.22) is called the non-interacting Green function G0

[i∂t � h0(1)] G0,↵�(12) = �(12)�↵�. (2.1.26)

With this definition the solution of the Green function’s equation of motion (2.1.22)

can be written in terms of a Dyson equation

G↵�(12) = G0,↵�(12) +Â
�,�

Z
d3 d4 G0,↵�(13)S��(34)G��(42). (2.1.27)

The external perturbation Uext causes a change of the density (2.1.16) that leads in

turn to a response of the system resulting in the total effective potential

Ueff(1) = Uext(1) +
Z

d2 d3 v(13)
�n(3)
�Uext(2)

����
Uext=0

Uext(2). (2.1.28)

The change of the effective potential with respect to the external perturbation equals

the inverse dielectric function

✏�1(12) =
�Ueff(1)
�Uext(2)

����
Uext=0

(2.1.29)
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2.1. Many-Body Perturbation Theory

characterizing the polarizability of the system. With this, the self-energy can be rear-

ranged such that

S↵�(12) = i Â
�

Z
d3 d4 G↵�(14)W(1+3)G��(42; 3), (2.1.30)

with the vertex correction

G↵�(12; 3) = � �G�1
↵� (12)

�Ueff(3)

�����
Uext=0

= �(12)�(13)�↵�

� Â
�,�,⌫,µ

Z
d4 d5 d6 d7

�S↵�(12)
�G��(45)

G�⌫(56)G⌫µ(67; 3)Gµ�(74), (2.1.31)

and the screened interaction

W(12) =
Z

d3✏�1(13)v(32) = v(12) +
Z

d3 d4 v(13)P(34)W(42), (2.1.32)

where

P(12) = �i Â
↵

�G↵↵(11+)
�Ueff(2)

= �i Â
↵,�,�

Z
d3 d4 G↵�(13)G��(34; 2)G�↵(41+), (2.1.33)

is the polarization of the system. The coupled set of integro-differential equations

(2.1.27), (2.1.30), (2.1.31), (2.1.32), and (2.1.33) constitute the Hedin equations. The

self-consistent solution of the Hedin equations, in principle, solves the many-body

problem exactly. The vertex function (2.1.31) is responsible for the coupling of the set

of equations. Therefore, the Hedin equations cannot be solved straightforwardly and

in practice, approximations are needed. A commonly used approach starts with a

non-interacting Green function G0 and iterates the Hedin equations once. In case of a

non-interacting system the self-energy vanishes so that the vertex function simplifies

to

G↵�(12; 3) = �(12)�(13)�↵�, (2.1.34)

and the polarization is given by

P(12) = �i Â
↵,�

G0,↵�(12)G0,�↵(21+), (2.1.35)
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2. Theoretical Foundations

which leads to the random-phase approximation (RPA) for the screened interaction

W (2.1.32). Iterating the Hedin equations once results in the GW self-energy

S↵�(12) = iG0,↵�(12)W(1+2), (2.1.36)

and the renormalized Green function is obtained by solving the Dyson equation

(2.1.27) with the GW self-energy. We analyze the magnetic response function in the

framework of the GW approximation in Chapter 3. In addition, we propose a new

self-energy approximation starting from the Hedin equations that accounts for the

coupling of spin excitations to electronic degrees of freedom in Chapter 4. In prac-

tical applications of the many-body perturbation theory the non-interacting Green

function is conveniently obtained from the density-functional theory, in which G0 is

the solution to the Hartree Hamiltonian (2.1.23) plus a local and energy independent

approximation to the exchange-correlation self-energy.

2.2 Density-Functional Theory

The density-functional theory (DFT) is nowadays one of the most widely used meth-

ods in theoretical condensed-matter physics, quantum chemistry, and computational

material science [76]. Density-functional theory allows to calculate ground-state

properties such as the total energy, the charge density, the magnetization density,

lattice constants, and so on, in good agreement with experimental findings. Hohen-

berg and Kohn [18] developed the density-functional theory for a non-degenerate

ground state of an interacting electron gas in an external potential. The density-

functional theory is based on two fundamental theorems. First, the wave function

Y[n(r)] of the ground state is a unique functional of the density n(r). Secondly, they

proved the existence of the ground-state energy functional E[n(r)], which is station-

ary with respect to the density, i.e., the energy functional E[n(r)] takes its minimum

at the true ground-state density n0(r). While the proof of Hohenberg and Kohn was

by reductio ad absurdum, Levy [86, 87] gave a constructive proof in analogy to the

Rayleigh-Ritz variational principle. The Rayleigh-Ritz variational principle ensures

that the ground-state wave function Y0 minimizes the total energy

E[Y] = hY|H|Yi � E[Y0], (2.2.1)

16



2.2. Density-Functional Theory

of a many-electron system described by the Hamiltonian H = T + U + V containing

the kinetic energy T, the Coulomb interaction between the electrons U and the exter-

nal potential energy V due to the interaction between the electrons and the nuclei. In

addition, the many-electron wave function Y is related to the density

n(r) = hY|Â
↵

 †
↵(r) ↵(r)|Yi, (2.2.2)

with the subsidiary condition that the charge density integrates to the total number

of electrons

N =
Z

dr n(r), (2.2.3)

so that the minimization of the energy functional for a given density n subject to the

many-electron wave function Y

E[n] = min
Y!n

hY[n]|T + U + V|Y[n]i = T[n] + U[n] + V[n], (2.2.4)

yields an energy higher than the ground-state energy if the density n is different

from the ground-state density n0 and accordingly the wave function Y is not the

ground-state wave function Y0. The kinetic energy functional T[n] forms, together

with the Coulomb interaction functional U[n], a functional F[n] = T[n] +U[n], which

is universal in the sense that it does not refer to the actual external potential energy

functional [76, 88]

V[n] =
Z

dr n(r)vext(r). (2.2.5)

The theorems of Hohenberg and Kohn were generalized to the spin-dependent case

by the generalization of the density to a spin density matrix

n↵�(r) = hY| †
↵(r) �(r)|Yi (2.2.6)

by von Barth and Hedin [89]. The existence of the energy functional (2.2.4) is, how-

ever, of little practical use as the functional form of F[n] = T[n] + U[n] remains un-

specified.

2.2.1 Kohn-Sham Formalism

Kohn and Sham [19] proposed a separation of the energy functional (2.2.4) guided

by the picture of non-interacting particles moving in an effective potential. This ap-

proach greatly simplifies the search for the functional form of the universal func-
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tional F[n]. The following formulas are given for the collinear spin-polarized case.

Kohn and Sham proposed a separation of the energy functional

E[n] = T0[n] + UH[n] + Exc[n] + V[n] (2.2.7)

into the kinetic energy of a system of non-interacting particles

T0[n] = Â
↵

Â
i

Z
dr'↵⇤i (r)

✓
�1

2
r2

r

◆
'↵i (r) (2.2.8)

with the single-particle orbitals'↵i (r) of spin↵ and the spin density

n↵(r) =
occ.

Â
i
|'↵i (r)|2, (2.2.9)

the Hartree energy, i.e., the electrostatic interaction energy due to the charge distri-

bution

UH[n] =
1
2

Z
dr dr0

n(r)n(r0)
|r � r0| , (2.2.10)

and the exchange-correlation energy Exc[n], which accounts for the difference of the

electron-electron interaction and the Hartree energy U[n] � UH[n] and for the dif-

ference that stems from the kinetic energy in an interacting and a non-interacting

system T[n]� T0[n]. The stationarity of the total energy with respect to the ground

state density can be recast into a variational principle for the single-particle wave

functions'↵i [n(r)], which are themselves functionals of the density, i.e., the variation

of the total energy functional (2.2.7) with respect to the single-particle wave functions

leads to the Kohn-Sham equations

✓
�1

2
r2

r + v↵eff(r)
◆
'↵i (r) = ✏

↵
i '

↵
i (r), (2.2.11)

where the Lagrange parameters ✏↵i account for the subsidiary condition that the

Kohn-Sham wave functions are normalized

Z
dr'↵⇤i (r)'↵i (r) = 1. (2.2.12)

Strictly speaking, neither the Lagrange parameter ✏↵i nor the Kohn-Sham wave func-

tions'↵i (r) can be interpreted in a physical manner. Yet, in practice ✏↵i is commonly

taken as the true excitation energy of an interacting electron system and'↵i (r) is in-

terpreted as the corresponding quasiparticle wave function. The Kohn-Sham equa-
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tions describe non-interacting particles'↵i (r) moving in an effective spin-dependent

potential

v↵eff(r) = vH(r) + v↵xc(r) + vext(r), (2.2.13)

with the Hartree potential vH(r) and the exchange-correlation potential

v↵xc(r) =
�Exc[n]
�n↵(r)

, (2.2.14)

which contains in principle all the many-body effects of the interacting systems. In

practice, however, the exchange-correlation potential has to be approximated. Com-

monly, the local-spin-density approximation (LSDA) to the exchange-correlation en-

ergy

ELSDA
xc [n] =

Z
dr n(r)"LSDA

xc (n(r)) (2.2.15)

or its semilocal generalization, the generalized gradient approximation (GGA)

EGGA
xc [n] =

Z
dr n(r)"GGA

xc (n(r),rn(r)) (2.2.16)

is used. The (semi-) local approximations to the exchange-correlation potential are

exact in the limit of a homogeneous electron gas. For the present work the self-

consistent solution of the Kohn-Sham equations (2.2.11) serves as starting point for a

subsequent many-body perturbation theory calculation. We employ either the LSDA

in the parameterization of Perdew and Zunger [90] or the GGA in the parameteriza-

tion of Perdew, Burke, and Ernzerhof [91].

2.3 Full-Potential Linearized Augemented-Plane-Wave

Method

The full-potential linearized augmented-plane-wave (FLAPW) method [48–50] is the

basis for the implementation of the density-functional theory realized in the FLEUR

code [92] as well as the implementation of the many-body perturbation theory re-

alized in the SPEX code [72]. Besides the FLAPW method, there is a wide variety

of electronic structure methods, each of which is optimized for a particular situation.

While there are methods which solve the electronic structure problem on a real-space

grid [93], frequently the wave functions are expanded into a linear combination of ba-

sis functions. The basis functions are chosen such that the electronic structure prob-

lem can be solved efficiently. Therefore, the choice of the basis functions depends
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on a) the problem under consideration, e.g., periodic solids, solids with surfaces, or

clusters of atoms and molecules, and b) the treatment of the external potential due to

the atomic nuclei [94].

In chemistry, localized basis functions such as the Slater-type orbitals or

Gaussian-type orbitals are widely used for a linear-combination of atomic orbitals

(LCAO) to treat clusters and molecules [95]. In lattice-periodic systems without spin-

orbit coupling, the wave functions follow the Bloch theorem [81] and consequently

they can be labeled by a Bloch vector k, a band index m, and a spin↵. Provided that

the effective potential of the Kohn-Sham equation is a smoothly varying function, the

plane-wave basis is a good choice for the representation of the wave function. This

is because the kinetic energy and also the solution to the Poisson equation, which

is necessary for the calculation of the Hartree potential, contains the Laplace oper-

ator Dr, which is diagonal in the plane-wave basis. In addition, the charge density

is easily expandable in plane waves. However, the plane-wave basis does not con-

verge if the full 1/r-Coulomb potential stemming from the atomic nuclei is taken into

account. Pseudopotential methods bypass the problematic 1/r-like behavior and re-

place the external potential by an effective smoothly varying potential that acts on

the valence states and assumes the core states to be frozen. There are various ways to

construct an effective potential, e.g., the norm-conserving pseudopotentials [96], the

ultrasoft Vanderbilt-type pseudopotentials [97], or the projector-augemented wave

(PAW) method [98, 99].

In contrast, full potential all-electron methods treat core and valence electrons on

equal footing by accounting for the full 1/r-Coulomb potential of the atomic nuclei

without any shape approximations. To this end, the space is partitioned into non-

overlapping spheres around the atoms called muffin-tin spheres and the interstitial

region. Within the muffin-tin spheres all-electron methods work with basis functions

which treat the singularity of the Coulomb potential exactly, i.e., the basis functions

are chosen as the solution of the radial Schrödinger equation

"

�1
2

d2

dr2 +
l(l + 1)

2r2 + va,↵
eff (r)� E↵a,l

#
ru↵a,l(r, E↵a,l) = 0 (2.3.1)

with a predetermined energy parameter E↵a,l for each atom a and angular momen-

tum l. Generally, the solutions of the radial Schrödinger equation (2.3.1) depend

on the predetermined energy parameter E↵a,l . In practice, the energy parameters are

chosen as close as possible to the Kohn-Sham energy eigenvalues. Nevertheless, the
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2.3. Full-Potential Linearized Augemented-Plane-Wave Method

energy eigenvalues of a lattice-periodic system are dispersive and depend on the

band index. In contrast, the energy parameters dependent on the atom a and an-

gular momentum l. Therefore, deviations between the energy parameters and the

actual band energies are unavoidable. Therefore, a basis constituting only of the

solution to the radial Schrödinger equation (2.3.1) with a predetermined energy pa-

rameter are usually too stiff in the sense that such a basis provides too little varia-

tional freedom for an accurate description of the wave functions. To solve this prob-

lem, the linear augmented-plane-wave (LAPW) method includes in addition to the

solutions u↵a,l(r, E↵a,l) of the radial Schrödinger equation (2.3.1), their energy deriva-

tives u̇↵a,l(r, E↵a,l). The solutions within the muffin-tin spheres are matched to energy-

independent plane waves as envelope functions in the interstitial region [100]. The

flexibility of the basis to accurately describe states in the vicinity of the chosen energy

parameter is increased as the representation error scales quadratically [101, 102]

u↵a,l(r, E) ⇡ u↵a,l(r, E↵a,l) + u̇↵a,l(r, E↵a,l)(E � E↵a,l) +O(E � E↵a,l)
2. (2.3.2)

The expression suggests that the basis set can be improved further by incorporat-

ing also the second energy derivative ü↵a,l(r, E↵a,l). This is, however, not the case:

Singh [103] showed that the inclusion of the second energy derivative makes the ba-

sis set less flexible as another matching condition at the muffin-tin sphere boundary

must be fulfilled. Instead of that he proposed to use local orbitals that are entirely

confined to the muffin-tin sphere. The inclusion of local orbitals allow an accurate

description of semi core states, i.e., high-lying core states that extend to the interstitial

region and high-lying unoccupied states. The local orbitals are a linear combination

of the functions u↵a,l(r, E↵a,l) and u̇↵a,l(r, E↵a,l) plus an additional function u↵,LO
a,l (r) that

is either another solution to the radial Schrödinger equation (2.3.1) with a different

energy parameter or the second energy derivative ü↵a,l(r, E↵a,l) [101, 102, 104]. The lo-

cal orbitals are constructed such that their values as well as their derivatives vanish

at the muffin-tin sphere boundary. It has been shown that the inclusion of local or-

bitals substantially reduces the dependence of the basis set on the predetermined

energy parameters E↵a,l as well as the dependence on the chosen muffin-tin sphere ra-

dius [101, 102]. In particular, calculations that rely on the summation of unoccupied

states such as the optimized-effective potential method or the GW approximation re-

quire the convergence of the basis set in terms of local orbitals to ensure an accurate

description of the high-lying unoccupied states [104–108].

To sum up, the full-potential linearized augmented-plane-wave method [48–50]
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2. Theoretical Foundations

accounts for the full potential of the atomic nuclei without any shape approxima-

tions. The Bloch wave functions '↵kn(r) are expanded within the LAPW method

piecewise in the muffin-tin region by atomic orbitals and in the interstitial region by

plane waves, that is

'↵kn(r) = Â
v
↵kn,v A↵k,v(r) +Â

G
�↵kn,GP↵k,G(r), (2.3.3)

where v ⌘ (a, p, l, m) is a composite index containing the atom number a in the unit-

cell, index p specifying the atomic orbitals, and the angular momentum l as well

as its z component m, and G are the reciprocal lattice vectors. The first term repre-

sents the wave function in the muffin-tin (MT) sphere, whereas the second term is

non-zero only in the interstitial region (IR). Both are related by the continuity condi-

tion of the Bloch function and its radial derivative at the muffin-tin sphere boundary

determining the coefficients  and � in Eq. 2.3.3. The atomic orbitals are defined as

A↵k,aplm(r) =

8
><

>:

1p
N ÂR�

↵
apl(|r � R � Ra|)Ylm( \r � R � Ra)eikR if r 2 MT

0 elsewhere
, (2.3.4)

where the functions�↵apl(r = |r|) represent the radial character of the atomic orbitals.

The atomic orbitals include three different types of functions: for p = 0 the functions

� are the solutions u↵a,l to the radial Schrödinger equation (2.3.1), p = 1 labels the

energy derivates u̇↵a,l , and p � 2 are local orbitals augmenting the basis function.

The angular dependence of the atomic orbitals is represented in terms of spherical

harmonics Ylm(br). N is the (infinite) number of unit cells. The interstitial region is

described by plane waves

P↵k,G(r) =

8
><

>:

1p
V

ei(k+G)r if r 2 IR

0 elsewhere
, (2.3.5)

where V is the (infinite) crystal volume. The FLAPW method is employed for the im-

plementation of the Kohn-Sham density-functional theory and the many-body per-

turbation theory. The representation of the wave functions in terms of the LAPW ba-

sis functions turns the differential Kohn-Sham equations (2.2.11) into a generalized

eigenvalue problem that can be solved efficiently. The resulting wave function and

energies are used for the subsequent many-body perturbation theory calculations.
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3. Spin-Wave Excitations

3.1 Introduction

Collective spin excitations form an important class of excitations in magnetic materi-

als. As their energy reaches from a few hundreds meV down to a few meV, they play

a fundamental role for the physical properties of magnetic solids at all temperatures.

For example, the specific heat [109] exhibits a characteristic T3/2 behavior that can

be attributed to the low-energy spin-wave excitations (magnons). The spin-wave

excitations are as well responsible for the temperature dependence of the macro-

scopic magnetization [110, 111]. As the temperature increases, another type of spin

excitations, the single-particle spin-flip excitations become increasingly important.

These excitations, known as Stoner excitations, give an important contribution to the

damping of the collective spin excitations and they further change the temperature

dependence of the magnetization.

The coupling of spin excitations to electronic states leads to a renormalization

of the quasiparticles. Recent, high-resolution angle-resolved photoemission spec-

troscopy (ARPES) experiments [58, 59] found a pronounced renormalization in the

quasiparticle band dispersion at high binding energies. While one experiment stud-

ied a minority spin surface state of iron, the other experiment analyzed a minority

spin bulk state of nickel. In both cases the significant deviation of the experimen-

tal data compared to a calculated band structure can be described by a self-energy

accounting for the coupling of spin excitations to electronic excitations. Similar cou-

pling processes might be relevant for superconducting materials. ARPES experi-

ments on high-temperature superconductors reveal an unusual line shape within

the spectra of the superconducting state [112–114]. The unusual line shape is called

a peak-dip-hump feature as it emerges from the presence of two features in the spec-
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3. Spin-Wave Excitations

tra. At the same time, neutron scattering experiments [115–120] find a magnetic reso-

nance in the superconducting state. The effect of the magnetic resonance on the elec-

tronic spectra has been discussed theoretically by Eschrig et al. [121–123]. They found

that the corresponding self-energy can explain various dispersion anomalies seen ex-

perimentally. Similar peak-dip-hump features are found in the spectra of the super-

conducting state of iron-based superconductors by ARPES experiments [124–128]

leading to kink structures in the quasiparticle band dispersion. Magnons are pro-

posed as mediating boson for the attractive electron-electron interaction that leads

to the superconducting state in the high-temperature superconductors [129–131]. A

recently conducted analysis of ARPES and an inelastic neutron scattering (INS) ex-

periment on the same high-temperature superconductor [132] supports this scenario.

The analysis demonstrates that the coupling strength of spin fluctuations to elec-

tronic quasiparticles is sufficiently large to explain superconducting transition tem-

peratures exceeding 150 K.

Recently, spin-wave excitations have been proposed for technical applications.

An exciting proposal is to use spin waves as information carriers for nanoscale logic

devices [8, 133, 134]. Employing the spin wave as information carrier might over-

come fundamental drawbacks of traditional transistor technology in electronics like

the complementary metal-oxide-semiconductor (CMOS) technology. A traditional

field effect transistor makes use of the motion of electrons to implement its switching

capabilities. The resulting waste heat increases the transistor’s power consumption.

Even worse, the generation of waste heat increases with increasing data processing

speed. In a recently proposed magnon transistor [8], the spin waves replace the elec-

trons as the information carriers. Consequently, the waste heat generation is reduced

because such a magnon transistor does not require charge transport. The proposed

magnon transistor is an all-magnon device entirely forgoing the use of electrons for

switching purposes, i.e., the magnon flow from the transistor’s source to its drain

is controlled by the injection of magnons into the transistor’s gate. An all-magnon

device might have the potential advantage that its size can be scaled down to the sub-

ten nanometer scale [8, 10] while it is capable of ultra-fast data processing reaching

the THz range [8, 11–13].

Clearly, spin excitations are equally interesting for their relevance in fundamen-

tal research and for their potential technical applications. Spin excitations can be ex-

perimentally studied by neutron-scattering experiments. Typical neutron-scattering

techniques, such as the triple-axis spectroscopy (TAS) or the time-of-flight spectrom-
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etry, allow to measure the neutron-scattering cross section directly. Spin excitations

manifest themselves as peaks in the scattering cross section [15–17, 135–140], which

is related to the spectral function of the transverse magnetic response function. The

magnetic response function describes the dynamical linear response of a magnetic

material to an external magnetic perturbation. Therefore, the magnetic response

function is the central quantity of interest to study spin excitations theoretically. It

allows to obtain the complete excitation spectrum, including Stoner excitations, col-

lective spin-wave excitations, and combinations thereof. Its spectral function exhibits

peaks at the spin-excitation energies with a certain width, which is associated with

the inverse lifetime of the spin excitations.

Collinear magnetic systems without spin anisotropy exhibit a spontaneously bro-

ken global rotational symmetry in spin space. As a consequence, the global spin

polarization can be rotated by a homogeneous magnetic field perpendicular to the

magnetization axis without a cost of energy. This, in turn, corresponds to an acous-

tic magnon mode with vanishing excitation energy in the long-wavelength limit, a

consequence of the Goldstone theorem. This theorem states that the spontaneously

broken spin-rotation symmetry leads to the appearance of a gapless magnon disper-

sion curve, a condition to which we refer to as the Goldstone condition. The Gold-

stone condition is often numerically violated in ab initio realizations of the magnetic

response function.

For a theoretical description of spin excitations various formalisms have been es-

tablished. A frequently used approach employs a separation of the slow magnetic

degrees of freedom and the fast motion of the electrons [20–24]. It is realized in the

classical Heisenberg model, which allows to study the collective spin excitations in

systems with localized moments. The Heisenberg model relies on parameters, the

so-called Heisenberg exchange parameters, which can be obtained from constrained

density-functional theory [25]. The Goldstone condition is identically fulfilled in this

approach. However, single-particle Stoner excitations are missing in the Heisenberg

model and, as a consequence, magnon lifetimes are inaccessible. In addition, the

local-moment approximation of the Heisenberg model is only justified for insula-

tors and rare-earth elements but not for metallic magnets such as the 3d ferromag-

nets [15]. Even though the Heisenberg model captures the long-wavelength spin

dynamics of the 3d ferromagnets reasonably well, it gives unsatisfactory results for

the short-wavelength spin excitations.

To overcome the shortcomings of the Heisenberg model, one needs a more gen-
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3. Spin-Wave Excitations

eral theoretical framework that works for systems with localized moments and for

itinerant-electron magnets alike. For example the many-body perturbation theory

(MBPT) provides such a framework in which the single-particle Stoner excitations

and the collective spin excitations appear simultaneously as poles in the transverse

magnetic response function, which describes the correlated motion of an electron-

hole pair with opposite spins coupled by an effective electron-electron interaction.

First applications to metallic magnets [141–143] employed a tight-binding descrip-

tion of the electronic bands. In this approach, the single-particle propagator and the

effective interaction derive from the same Hamiltonian so that the Goldstone condi-

tion is fulfilled by construction.

Parameter-free calculations of the magnetic response function based on ab ini-

tio electronic structure methods are scarce in the literature. This is because such

calculations demand a tremendous computational cost. Apart from MBPT calcula-

tions [43–45] another method that is often used is time-dependent density-functional

theory (TDDFT). Usually, calculations of the magnetic response function within

TDDFT [33–42] have to account for the violation of the Goldstone condition. The ori-

gin of this violation is attributed to approximations in the numerical scheme [39,42],

i.e., the exchange-correlation kernel and the non-interacting magnetic response func-

tion are derived from different ground-state calculations. To ensure the proper

long-wavelength limit of the spin-wave spectrum, Lounis et al. [38–41] deduce the

exchange-correlation kernel from a magnetic sum rule. Based on similar grounds,

Rousseau et al. [42] construct a correction scheme for the magnetic response func-

tion, while the exchange-correlation kernel remains unchanged. Another correction

scheme is implemented by Buczek et al. [34, 37], they set the smallest eigenvalue of

the enhancement matrix equal to zero to account for the Goldstone condition.

First studies of spin-wave excitations based on the ab initio electronic structure

of itinerant ferromagnets using MBPT were performed by Karlsson and Aryaseti-

awan [44]. However, they employed a model potential for the effective interaction

among the electron-hole pairs. Kotani and van Schilfgaarde [45] studied spin-wave

spectra based on quasiparticle self-consistent GW calculations [144–147]. The effec-

tive interaction is determined from a magnetic sum rule, similar to the approach used

by Lounis et al. [39], ensuring the fulfillment of the Goldstone condition. The first

who performed a full ab initio study of spin-wave spectra within MBPT was Şaşıoğlu

et al. [43]. What contrasts their study from previous works is that they calculated the

screened interaction explicitly from the random-phase approximation (RPA). They
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ensure the Goldstone condition by introducing a scaling factor for the screened in-

teraction. In most cases the scaling factor was relatively close to 1, but it could reach

1.5 for bulk nickel, unless the exchange splitting was adjusted to the experimental

value as an ad hoc correction.

The violation of the Goldstone condition in the MBPT calculations is more funda-

mental compared to the case of TDDFT. The present chapter investigates the Gold-

stone violation in MBPT. Parts and results of this chapter have been published re-

cently [51]. We argue that the Goldstone violation originates to a large degree from

the inconsistency between the non-interacting magnetic response function, which is

constructed from the single-particle Green function, and the RPA screened interac-

tion. The inconsistency stems from the fact that the two quantities derive from differ-

ent Hamiltonians. While the single-particle Green function derives from the Kohn-

Sham density-functional theory within the local-spin-density approximation (LSDA)

or the generalized gradient approximation (GGA), the screened interaction derives

from the GW self-energy [71] with an additional static approximation. We argue that

constructing the single-particle Green function from a self-consistent Coulomb-hole

screened exchange (COHSEX) self-energy [71] instead should lift the inconsistency.

We perform self-consistent calculations of the COHSEX self-energy for the bulk 3d

transition metals iron, cobalt, and nickel. The results, in turn, are employed as start-

ing point for the calculation of the magnetic response function. Within this approach,

we find, in fact, a substantial reduction of the Goldstone violation.

The application of the COHSEX self-energy is considerably more time-consuming

compared to standard Kohn-Sham density-functional theory calculations. In order

to bypass the additional computational effort needed for the self-consistent COH-

SEX calculation, we discuss a correction scheme for the Kohn-Sham Green function

of ferromagnetic materials. The Goldstone condition can be analyzed in detail by

means of the spin-wave solution of the one-band Hubbard model. The analysis re-

veals that the magnetization, the exchange splitting, and the interaction among the

electron-hole pairs are intimately connected [148,149]. With this in mind, we propose

a correction scheme for the non-interacting magnetic response function to resolve the

Goldstone violation. We show that the corrected LSDA spin-wave spectra and the

corrected GGA spin-wave spectra for the 3d transition metals iron, cobalt, and nickel

are close to the results obtained from the much more expensive COHSEX approach

and to experimental measurements.

The next section gives an overview of the theoretical framework of the magnetic
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response function, and the details of its implementation are summarized in Section

3.3. The magnetic response function is analyzed in view of the Goldstone condition

in Section 3.4. The violation of the Goldstone condition in MBPT and the starting-

point dependence of the spin-wave spectra of iron, cobalt, and nickel is discussed in

Section 3.5. We conclude the discussion with a summary in Section 3.6.

3.2 Theory

Inelastic neutron scattering (INS) experiments are commonly used to study the mag-

netic properties of bulk materials [15,140,141,150–154]. The neutron as a charge neu-

tral particle is able to scatter with the nuclei without electrostatic interaction. As a

consequence, the neutron probes, on the one hand, phonon excitations. On the other

hand, the magnetic spin of the neutron interacts with the spins of the system giving

rise to spin excitations. The neutron scattering cross section coming from the spin

excitations is related to the magnetic response function of the system. The magnetic

response function describes the change of the spin density due to an external mag-

netic perturbation. The Green function of the interacting many-body system carries

the information about the average spin density of its ground state

h� i(rt)i = �i Â
↵,�
� i
�↵G↵�(rt, rt+), (3.2.1)

where � i
�↵ is the i-th Pauli matrix with i = x, y, z, Greek letters denote spin indices,

and t+ = t+ ⌘with a positive infinitesimal time ⌘ provides the correct time ordering

of the field operators in the Green function. The neutrons in a neutron scattering

experiment can be prepared such that their magnetic perturbation corresponds to

that of a circularly polarized magnetic field B+ = Bx + iBy. A magnetic perturbation

�B+(r0t0) gives rise to spin excitations �h�+i = �h�xi+ i�h�yi which are described

by the transverse magnetic response function

R+�(rt, r0t0) =
�h�+(rt)i
�B+(r0t0)

. (3.2.2)

This function accounts for the linear response of the magnetic system to an external

circularly polarized magnetic perturbation. The magnetic response function (3.2.2)

can be written as a time-ordered correlation function [111]

R+�(rt, r0t0) = �ihT S+(rt)S�(r0t0)i. (3.2.3)
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Given that the Hamiltonian is not explicitly time-dependent, the response function

depends only on the time-difference ⌧ = t � t0 between the action of the spin-ladder

operators S± = �±/2, and we write for the magnetic response function R+�(r, r0; ⌧).

The time-ordering operator T ensures that the operators are ordered with increasing

time arguments from right to left, i.e.,

R+�(r, r0; ⌧) = �i

8
><

>:

hS+(r⌧)S�(r00)i, ⌧ > 0

hS�(r00)S+(r⌧)i, ⌧ < 0
. (3.2.4)

The response function is not uniquely defined for equal times t = t0 due to the time-

ordering operator, and the response function’s limiting values ⌧ ! 0± from left and

right differ. As a result, the response function has a step at equal times ⌧ = 0. The size

of the step amounts to the magnetization of the system. The magnetization can be

formally written in terms of the commutation relation of the spin-ladder operators.

It can be constructed by means of the time-ordered magnetic response function

2hSz(r)i = i
Z

dr0
✓

lim
⌧!0+

R+�(r, r0; ⌧)� lim
⌧!0�

R+�(r, r0; ⌧)
◆
�(r � r0). (3.2.5)

Also, the anti-commutation relation of the spin-ladder operator allows a physical

interpretation. The anti-commutation relation of the spin-ladder operators yields the

transverse spin fluctuations

2h[S2
x + S2

y](r)i = i
Z

dr0
✓

lim
⌧!0+

R+�(r, r0; ⌧) + lim
⌧!0�

R+�(r, r0; ⌧)
◆
�(r � r0). (3.2.6)

The sum rule of the magnetization (3.2.5) and that of the transverse spin fluctua-

tions (3.2.6) has been implemented by means of the magnetic response function.

For a treatment of the magnetic response function within MBPT the expression

(3.2.2) together with Eq. (3.2.1) forms the starting point. The formalism has been

introduced by Aryasetiawan and Karlsson [155], it relies on the Schwinger func-

tional derivative technique [85]. Şaşıoğlu et al. [43] have implemented the formalism

in an all-electron Wannier function formulation employing the GW approximation

for the exchange and correlation self-energy. In this case, the magnetic response

function obeys a Bethe-Salpeter equation that yields an infinite summation of lad-

der diagrams. The ladder diagrams are a special type of Feynman diagrams that

describe the correlated motion of an electron-hole pair with opposite spins. The cor-

relation among the electron-hole pairs is mediated by the screened Coulomb interac-
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tion W that derives from the GW approximation. The spin excitations, i.e., the col-

lective spin-wave excitations, the renormalized Stoner excitations, and combinations

thereof, emerge from the correlated motion of the electron-hole pairs. The derivation

of the magnetic response function within MBPT employing the GW approximation

has been presented by Şaşıoğlu et al. [43] and in more general terms by Friedrich

et al. [72]. For the sake of completeness, we give a brief summary of the derivation

here. We abbreviate the space and time argument by its corresponding index, i.e., we

write 1 = r1t1.

The Green function is the solution of the Dyson equation [156]

G�1
↵� (12) = G�1

0,↵�(12)� S↵�(12), (3.2.7)

with the inverse non-interacting Green function

G�1
0,↵�(12) =


�i

∂
∂t1

� 1
2
r2

r1
� vext(r1)� vH(r1)

�
�(12)�↵� �

"

Â
i
� i
↵�Bi(1)

#
�(12),

(3.2.8)

and the exchange-correlation self-energy S↵�(12). The non-interacting Green func-

tion is the solution of the Hartree Hamiltonian that contains the kinetic energy, the

external potential vext(r1), the Hartree potential vH(r1), and the Zeeman term

Â
i
� i
↵�Bi(1) =

1
2

h
�+
↵�B�(1) +��

↵�B+(1)
i
+�z

↵�Bz(1), (3.2.9)

which describes the coupling of the system to an external magnetic perturbation. We

employ the GW approximation [71] for the exchange-correlation self-energy

S↵�(12) = iG↵�(12)W(1+2), (3.2.10)

where

W(12) = v(12) +
Z

d3 d4 v(13)P(34)W(42) (3.2.11)

is the screened interaction. The screening of the bare Coulomb interaction v(12) =

�(t1 � t2)/|r1 � r2| is described by the random-phase approximation (RPA) to the

polarization function

P(12) = �i Â
↵,�

G↵�(12)G�↵(21+). (3.2.12)

We note that a conserving implementation of the magnetic response function requires
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that the Dyson equation (3.2.7) is solved self-consistently. To expand the magnetic

response function (3.2.2) in terms of an effective interaction, the functional derivative

of the Green function itself is needed. It is related to the functional derivative of the

inverse Green function

�G↵�(12)
�Bi(3)

= �Â
�,�

Z
d4 d5 G↵�(14)

�G�1
�� (45)
�Bi(3)

G��(52), (3.2.13)

which allows to employ the Dyson equation (3.2.7) for its evaluation. We restrict our-

selves to collinear magnetic systems, i.e., the Green function is diagonal in spin space.

The functional derivative of the inverse Green function contains two contributions

�G�1
#" (12)

�B+(3)
= ��(13)�(12)� �S#"(12)

�B+(3)
, (3.2.14)

the first term on the right-hand side stems from the Zeeman term of the non-

interacting Green function’s equation of motion (3.2.8). The second term involves

the functional derivative of the GW self-energy, it derives from the Dyson equa-

tion (3.2.7) itself. To sum up, the functional derivative of the inverse Green func-

tion (3.2.14) in combination with Eq. (3.2.13) yields the transverse magnetic response

function

R+�(12) = �2i


G#(12)G"(21+) +
Z

d3 d4 G#(13)
�S#"(34)
�B+(2)

G"(41+)
�

. (3.2.15)

In case of a collinear magnetic system, the functional derivative of the GW self-

energy is

�S#"(12)
�B+(3)

= iW(1+2)


G#(13)G"(32) +
Z

d4 d5 G#(14)
�S#"(45)
�B+(3)

G"(52)
�

. (3.2.16)

Here, we have used that the spin indices of the Green function are either both up or

both down, i.e., G↵↵ = G↵. The successive reinsertion of �S/�B on the right-hand

side of Eq. (3.2.15) yields terms of ever increasing order leading to the Bethe-Salpeter

equation of the magnetic response function. The generalization of the magnetic re-

sponse function to an auxiliary four-point quantity has the advantage that the Bethe-

Salpeter equation can be solved by matrix inversion. The auxiliary four-point quan-

tity R(4)
↵↵0(12, 34) is implicitly defined via

�S#"(12)
�B+(3)

= W(1+2)R(4)
#" (12, 33). (3.2.17)
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Figure 3.1: Feynman diagram of the magnetic response function in the ladder ap-
proximation. The wiggly line denotes the screened interaction in the random-phase
approximation (RPA) and the single-particle Green function is denoted by an arrow.

In addition to that, we have to generalize the two-particle propagator to a four-point

quantity

K#"(12, 34) = iG#(13)G"(42). (3.2.18)

The generalization of the magnetic response function to a four-point quantity turns

the Bethe-Salpeter equation into a matrix equation

R(4)
#" (12, 34) = K#"(12, 34) +

Z
d5 d6 K#"(12, 56)W(5+6)R(4)

#" (56, 34), (3.2.19)

and its solution gives the magnetic response function in the ladder approximation,

shown in Fig. 3.1. While the rungs of the ladder correspond to the screened inter-

action W, its rails describe the propagation of the electron-hole pairs with opposite

spins. The physically meaningful magnetic response function, however, is the two-

point magnetic response function. It is obtained by contraction of the auxiliary four-

point magnetic response function

R+�(12) = �2R(4)
#" (11, 22). (3.2.20)

We have implemented the magnetic response function in the many-body perturba-

tion theory. The details of the implementation are discussed in the next section.

3.3 Implementation

The implementation of the magnetic response function within many-body perturba-

tion theory is realized in the SPEX code [72] and relies on the full-potential linearized

augment-plane-wave (FLAPW) method. The starting point of a magnetic response

function calculation is a mean-field solution provided by the FLEUR [92] code, which

is a FLAPW implementation of the density-functional theory [18, 19]. The imple-

mentation of the magnetic response function makes use of the fact that the Hamil-
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Figure 3.2: Average diagonal element of the screened interaction projected onto a
lattice site R employing a basis of Wannier function consisting of s, p, and d orbitals
for iron (blue dashed), cobalt (red dash-dotted), and nickel (green solid). The left
and right panel show the frequency dependence of the screened interaction and the
spatial dependence of the static screened interaction, respectively.

tonian is not explicitly time dependent. As a consequence, the magnetic response

function R(4), see Fig. 3.1, depends on three independent time arguments. How-

ever, the calculation of the magnetic response function from the four-point function

R(4) is still too complex. Since spin-wave excitations are low-energy excitations, it

is reasonable to approximate the frequency dependent screened interaction W by its

static limit, compare the frequency dependence of the screened interaction shown

in the left panel of Fig. 3.2. The static approximation implies that the interaction is

instantaneous in time, i.e., W(12) = W(r1, r2)�(t1 � t2). With this approximation the

magnetic response function depends only on a single time or frequency argument.

After a Fourier transformation, Eq. (3.2.19) turns into the Bethe-Salpeter equation in

the frequency domain

R(4)
#" (r1, r2; r3, r4;!) = K#"(r1, r2; r3, r4;!)

+
Z

dr5 dr6 K#"(r1, r2; r5, r6;!)W(r5, r6)R(4)
#" (r5, r6; r3, r4;!). (3.3.1)

Here, we have used that the two-particle propagator K depends only on the time

difference ⌧ = t � t0 with t = t1 = t2 and t0 = t3 = t4,

K↵↵0(r1, r2; r3, r4; ⌧) = i G↵(r1, r3; ⌧) G↵0(r4, r2;�⌧). (3.3.2)

The Bethe-Salpeter equation (3.3.1) is still too complex for a numerical treatment as

the interaction W(r, r0) is non-zero for all separations r and r0. In metallic systems,
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Figure 3.3: Feynman diagram of the non-interacting magnetic response function.
The non-interacting magnetic response function describes the independent propaga-
tion of an electron-hole pair with opposite spins ↵ 6= ↵0. The screened interaction
within the on-site approximation restricts the points r1 and r2 as well as r3 and r4 to
be at the same lattice site R and R0, respectively. An electron is depicted by an arrow
from right to left for ⌧ > 0.

however, screening is very effective so that the screened interaction is short-range.

We utilize the short-range behavior of the screened interaction W and introduce an

on-site approximation. The on-site approximation means that the electron-hole pairs

interact with each other only if they are located at the same atomic site. Off-site con-

tributions to the interaction are neglected. Especially in metallic systems the on-site

approximation is a good approximation as the off-site contributions fall off suffi-

ciently fast, compare the spatial dependence of the static screened interaction shown

in the right panel of Fig. 3.2. The short-range behavior of the screened interaction W

motivates a formulation in a basis of maximally localized Wannier functions [46,47].

3.3.1 Formulation in a Wannier Basis

The formulation in the Wannier basis allows an efficient real-space truncation of the

magnetic response function. The truncation is realized by projecting the magnetic

response function onto maximally localized Wannier functions. They are defined as

Fourier transforms of the single-particle wave functions that serve as starting point

of the many-body perturbation theory calculation

w↵Rn(r) =
1
N Â

k
e�ikR Â

m
U↵

km,n'
↵
km(r), (3.3.3)

where n labels the Wannier functions per atomic site R, and N is the number of k

points used in the calculation. Here, we restrict ourselves to crystals with a single

atom in the unit cell. The Wannier functions are constructed from linear combina-

tions of single-particle states. The Wannier functions are calculated with the method

proposed by Marzari and Vanderbilt [46], which is implemented in the WANNIER90
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3.3. Implementation

code [47]. The Wannier functions are calculated such that the transformation ma-

trix U↵
km,n minimizes their spread. The two-particle propagator, as product of two

Green functions in the time domain (3.3.2), turns into a convolution in the frequency

domain. With the Lehman representation of the Green function

G↵(r, r0;!) =
1
N

all

Â
km

'↵km(r)'
↵⇤
km(r

0)
!�✏↵km + i⌘sgn(✏↵km �✏F)

, (3.3.4)

where ✏F denotes the Fermi energy, the two-particle propagator evaluates to

K↵↵0(r1, r2; r3, r4;!) =
1

N2

occ.

Â
km

unocc.

Â
k0m0

 
'↵km(r1)'↵⇤km(r3)'↵

0⇤
k0m0(r2)'↵

0
k0m0(r4)

!+✏↵
0

k0m0 �✏↵km � i⌘

� '↵k0m0(r1)'↵⇤k0m0(r3)'↵
0⇤

km(r2)'↵
0

km(r4)

!+✏↵
0

km �✏↵k0m0 + i⌘

!
(3.3.5)

in the frequency domain. The on-site approximation to the screened interaction re-

stricts the points r1 and r2 as well as r3 and r4 to be at the same lattice site, say R and

R0, see Fig 3.3. The two-particle propagator projected onto the maximally localized

Wannier functions

K↵↵
0

Rn1Rn2,R0n3R0n4
(!) =

1
N2

occ.

Â
km

unocc.

Â
k0m0

 
U↵⇤

km,n1
U↵

km,n3
U↵0

k0m0 ,n2
U↵0⇤

k0m0 ,n4

!+✏↵
0

k0m0 �✏↵km � i⌘
ei(k�k0)(R�R0)

� U↵⇤
k0m0 ,n1

U↵
k0m0 ,n3

U↵0
km,n2

U↵0⇤
km,n4

!+✏↵
0

km �✏↵k0m0 + i⌘
e�i(k�k0)(R�R0)

!
(3.3.6)

depends only on the lattice site difference DR = R � R0. This allows to apply a

(lattice) Fourier transformation into the Bloch momentum space

K↵↵
0

n1n2,n3n4
(q,!) = Â

RR0
e�iq(R�R0) K↵↵

0
Rn1Rn2,R0n3R0n4

(!)

=
1
N Â

k

occ.

Â
m

unocc.

Â
m0

 
U↵⇤

q+km,n1
U↵

q+km,n3
U↵0

km0 ,n2
U↵0⇤

km0 ,n4

!+✏↵
0

km0 �✏↵q+km � i⌘

�
U↵⇤

q+km0 ,n1
U↵

q+km0 ,n3
U↵0

km,n2
U↵0⇤

km,n4

!+✏↵
0

km �✏↵q+km0 + i⌘

!
. (3.3.7)

For the Brillouin zone integration we employ the tetrahedron method [157]. Unlike

the two-particle propagator, the screened interaction W(r, r0) is a two-point function.
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3. Spin-Wave Excitations

Its representation in the Wannier product basis reads

W↵↵0
Rn1Rn2,Rn3Rn4

=
N
N
Z

dr dr0 w↵⇤Rn1
(r)w↵Rn3

(r)W(r, r0)w↵
0

Rn2
(r0)w↵

0⇤
Rn4

(r0). (3.3.8)

As the screened interaction W(r, r0) is non-zero for all separations r and r0 the inte-

grals run over the whole space. While the single-particle wave functions are normal-

ized to the unit cell, the Wannier functions are normalized to the supercell. To avoid

double counting the integral is normalized by the normalization factor N/N which

accounts for the (infinite) number of supercells taken into account, where N counts

the (infinite) number of unit cells. The spin-dependence of the interaction matrix is

inherited from the spin-dependence of the Wannier functions, while the interaction

itself is independent of the spin. With the definition of the Wannier functions the

screened interaction reads

W↵↵0
Rn1Rn2,Rn3Rn4

=
1

N3 Â
k,k0 ,k00

Â
m1,m2,m3,m4

U↵⇤
k+k0m1,n1

U↵
km3,n3

U↵0
k0+k00m2,n2

U↵0⇤
k0m4,n4

⇥ 1
N
Z

dr dr0'↵⇤k+k00m1
(r)'↵km3

(r)W(r, r0)'↵
0

k0+k00m2
(r0)'↵

0⇤
k0m4

(r0), (3.3.9)

Here, we have used that the screened interaction depends only on the separation

r � r0. The screened interaction is independent of the atomic site R so that we write

W↵↵0
Rn1Rn2,Rn3Rn4

= W↵↵0
n1n2,n3n4

.

With the two-particle propagator K and the screened interaction W projected onto

the Wannier basis, we are prepared to solve the Bethe-Salpeter equation (3.3.1) for the

auxiliary four-point magnetic response function

R(4)↵↵0
Rn1Rn2,R0n3R0n4

(!) = K↵↵
0

Rn1Rn2,R0n3R0n4
(!) +Â

R00
Â

n5,n6,n7,n8

K↵↵
0

Rn1Rn2,R00n5R00n6
(!)

⇥ W↵↵0
n5n6,n7n8

R(4)↵↵0
R00n7R00n8,R0n3R0n4

(!). (3.3.10)

Just as the two-particle propagator K discussed above, the four-point magnetic re-

sponse function depends only on the difference DR = R � R0. This allows to apply a

(inverse) lattice Fourier transformation yielding the Bethe-Salpeter equation

R(4)↵↵0
n1n2,n3n4(q,!) = K↵↵

0
n1n2,n3n4

(q,!) + Â
n5,n6,n7,n8

K↵↵
0

n1n2,n5n6
(q,!)

⇥ W↵↵0
n5n6,n7n8

R(4)↵↵0
n7n8,n3n4(q,!). (3.3.11)
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This is a matrix equation in pairs of Wannier indices which can be solved for the

four-point response matrix by inversion, i.e., schematically

R(4) = (1 � KW)�1K. (3.3.12)

The physically relevant two-point magnetic response function R+�(r, r0;!) is gener-

ated from the four-point function by the contraction

R+�(r, r0;!) = �2R(4)
#" (r, r; r0, r0;!)

= �2 Â
R,R0

Â
n1,n2,n3,n4

R(4)#"
Rn1Rn2,R0n3R0n4

(!)W#"
Rn1n2

(r)W#"⇤
R0n3n4

(r0), (3.3.13)

with the products of Wannier functions

W#"
Rn1n2

(r) = w#
Rn1

(r)w"⇤
Rn2

(r). (3.3.14)

The lattice Fourier transform

W#"
qn1n2(r) =

1p
N Â

R
eiqRW#"

Rn1n2
(r) (3.3.15)

allows to evaluate the contraction of the four-point magnetic response function by

means of the solution to Eq. (3.3.11)

R+�(r, r0;!) = �2 Â
q

Â
n1,n2,n3,n4

R(4)#"
n1n2,n3n4(q,!)W#"

qn1n2(r)W
#"⇤
qn3n4(r

0). (3.3.16)

For a comparison with the spectrum measured in neutron scattering experiments,

the imaginary part of the two-point magnetic response function is projected onto the

plane wave eiqr from both sides, which gives the function ImR+�(q,!). In this func-

tion, well defined spin-wave excitations manifest themselves as sharp �-like peaks.

The spin-wave dispersion relation is obtained by plotting the energy values ! of

these peaks against q.

3.3.2 Sum Rules

The magnetic moment (3.2.5) and the transverse spin fluctuation (3.2.6) are both ac-

cessible by means of the magnetic response function. We calculate these sum rules

by projecting the magnetic response function onto a constant function |1iR at lattice
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site R. For this, we use the projection

�#"R (!) = Â
n1,n2,n3,n4

Rh1|W#"
Rn1n2

ihW̃#"
Rn1n2

|R+�(!)|W̃#"
Rn3n4

ihW#"
Rn3n4

|1iR, (3.3.17)

with the Wannier product functions W#"
Rn1n2

(r) defined in Eq. (3.3.14) and the

biorthogonal functions W̃#"
Rn1n2

(r) defined such that the projector

Â
n1,n2

|W̃#"
Rn1n2

ihW#"
Rn1n2

| = |1iR Rh1| (3.3.18)

is an identity at lattice site R, while it is zero at all other sites. The four-point magnetic

response function that appears in Eq. (3.3.17) is accessible via the matrix inversion of

the Bethe-Salpeter equation (3.3.11). The physically relevant two-point magnetic re-

sponse function is related to its four-point generalization by the contraction (3.3.16).

Its projection reads

�#"R (!) = � 2
N Â

q
Â

n1,n2,n3,n4

Rh1|W#"
Rn1n2

iR(4)#"
n1n2,n3n4(q,!)hW#"

Rn3n4
|1iR, (3.3.19)

where we have used that, e.g., the projection from the right is given by

Â
n1n2

hW#"
qn3n4 |W̃#"

Rn1n2
ihW#"

Rn1n2
|1iR =

1p
N

e�iqRhW#"
Rn3n4

|1iR. (3.3.20)

The projection onto a constant function at lattice site R corresponds to the overlap of

two Wannier orbitals that can be related to the spin off-diagonal overlap matrix of

the Bloch wave functions by the definition of the Wannier functions (3.3.3)

Rh1|W#"
R,n1n2

i = hw"
Rn2

|w#
Rn1

i = 1
N Â

k
Â

m,m0
U"⇤

km0 ,n2
h'"

km0 |'#
kmiU#

km,n1
. (3.3.21)

The spin off-diagonal overlap matrix of the wave functions h'"
km0 |'#

kmi is constructed

by means of the FLAPW approach. With the definition (2.3.3) the overlap of two

Bloch functions separates into the overlap in the muffin-tin (MT) spheres and the

overlap in the interstitial region (IR)

h'"
kn|'#

kn0 i =
Z

dr

"

Â
u,u0

⇣
"⇤kn,u A"⇤

k,u(r)A#
k,u0(r)#kn0 ,u0

⌘

+ Â
G,G0

⇣
�"⇤

kn,GP"⇤
k,G(r)P#

k,G0(r)�#
kn0 ,G0

⌘#
. (3.3.22)

38



3.3. Implementation

The second term on the right-hand side of this equation is the integration of the

interstitial region. If the integration of the interstitial region is extended to the whole

space, this gives rise to a Kronecker �G,G0 coming from the orthogonality of the plane

waves. The remainder, the integration of the plane waves in the muffin-tin sphere,

can be evaluated using the Rayleigh expansion

eiGr = 4⇡Â
l,m

il jl(|G||r|)Y⇤
lm(Ĝ)Ylm(r̂), (3.3.23)

where jl(z) denote the spherical Bessel functions and Ylm(bG) describe the spherical

harmonics. The angular integration of the spherical harmonics

Z
dr̂ Ylm(r̂) =

p
4⇡ �l,0�m,0 (3.3.24)

gives a contribution only for l = m = 0. Therefore, the overlap of the plane waves in

the interstitial region is given by

1
V

Z

IR
dr Â

G,G0
�"⇤

kn,G�
#
kn0 ,G0ei(G�G0)r =

Â
G,G0

�"⇤
kn,G

✓
�G,G0 � 4⇡

Z

MT
dr j0(|G � G0|r)

◆
�#

kn0 ,G0 . (3.3.25)

The contribution of the muffin-tin spheres is calculated by making use of the orthog-

onality of the spherical harmonics

Z
dr̂ Y⇤

lm(r̂)Yl0m0(r̂) = �l,l0�m,m0 , (3.3.26)

which reduces the problem to calculating the radial integration of the atomic orbitals

Z
dr Â

u,u0

⇣
"⇤kn,u A"⇤

k,u(r)A#
k,u0(r)#kn0 ,u0

⌘

=
1
N Â

a,l,m,p,p0


"⇤kn,alpm

✓Z
dr�"⇤

alp(r)�
#
alp0(r)

◆
#kn0 ,alp0m

�
, (3.3.27)

where we have used that the orbitals overlap only if they are located at the same

atom, which gives rise to an additional Kronecker �a,a0 . To sum up, the projector

(3.3.21) is calculated by means of the overlap of the FLAPW Bloch functions (3.3.22)

with the contribution of the muffin-tin spheres (3.3.27) and the interstitial region

(3.3.25). This allows to calculate the sum rules of the magnetic response function
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in terms of its projection onto a lattice site.

The magnetic moment projected onto a lattice site

mR = Â
n1,n2,n3,n4

Rh1|W#"
Rn1n2

ihW̃#"
Rn1n2

|m|W̃#"
Rn3n4

ihW#"
Rn3n4

|1iR, (3.3.28)

can be calculated from the projection of the magnetic response function (3.3.19).

To this end, the commutation relation of the spin-ladder operators that equals the

magnetic moment operator is constructed by means of the magnetic response func-

tion (3.2.5). The magnetic response function has to be Fourier transformed to the

time domain such that the spin-ladder operators obey the correct time-ordering, i.e.,

mR =
i

2⇡

✓
lim
⌧!0+

Z 1

�1
d! e�i!⌧�#"R (!)� lim

⌧!0�

Z 1

�1
d! e�i!⌧�#"R (!)

◆
. (3.3.29)

The Fourier transformations are performed by means of a contour integration. For

this, we use a Padé approximation to the magnetic response function. This allows

to represent the magnetic response function as a sum of effective poles so that the

integration can be performed analytically. The exponential factors e�i!⌧ together

with the limit ⌧ ! 0± ensure that the arcs that close the contour integration paths

do not contribute to the integral. In particular, the contour is closed in the lower half

plane for ⌧ ! 0+, and for ⌧ ! 0� the contour is closed in the upper half plane. The

details of the frequency integration employing a Padé approximation are described

in Appendix A.

The Lehman representation of the non-interacting magnetic response function

(3.3.7) allows the magnetic-moment sum rule to be expressed explicitly. In this case,

the magnetic moment projected onto a lattice site R reads

mR =
2
N

occ.

Â
km

Â
n1,n2,n3,n4

Rh1|W"#
Rn1,n2

i
h
U"⇤

km,n1
U"

km,n3
�n2,n4 � U#

km,n2
U#⇤

km,n4
�n1,n3

i

⇥ hW"#
Rn3,n4

|1iR. (3.3.30)

Its value equals that of the magnetic moment obtained from the (renormalized) mag-

netic response function. This means the renormalization does not change the value

of the magnetic moment. The reason is that the spectral weight of the magnetic

response function does not change by the renormalization. As a consequence, the

magnetic moment which equals the integrated spectral weight does not change, too.

The calculated magnetic moments projected onto a lattice site by means of the non-
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3.4. Formal Discussion of the Goldstone-Mode Condition

non-interacting renormalized
mR [µB] Fe 2.19 2.19

Co 1.60 1.60
Ni 0.58 0.58

2hS2
x + S2

yiR [µ2
B] Fe 1.93 2.56

Co 1.62 1.87
Ni 1.20 1.35

Table 3.1: Magnetic moment and transverse spin fluctuations obtained from the
sum rules (3.3.29) and (3.3.31) using the non-interacting and renormalized magnetic
response function for the elementary ferromagnets. A local-spin-density approxima-
tion calculation using the parameterization of the exchange-correlation potential by
Perdew and Zunger [90] served as starting point. The magnetic moments obtained
within the muffin-tin spheres are mFe = 2.20µB, mCo = 1.62µB, and mNi = 0.59µB
for iron, cobalt, and nickel, respectively.

interacting and renormalized magnetic response function are summarized in Table

3.1. The magnetic moments are in accordance with the values obtained from the un-

derlying Kohn-Sham system within the muffin-tin spheres. Minor differences among

the magnetic moments can be attributed to the difference within the integration re-

gions defined by the projection onto a lattice site in terms of the maximally localized

Wannier functions and the muffin-tin spheres used in the density-functional theory

calculation. In contrast to the magnetic moment, the spin fluctuation projected onto

a lattice site R

2hS2
x + S2

yiR =
i

2⇡

✓
lim
⌧!0+

Z 1

�1
d! e�i!⌧�#"R (!) + lim

⌧!0�

Z 1

�1
d! e�i!⌧�#"R (!)

◆

(3.3.31)

does change due to the renormalization of the magnetic response function. The rea-

son is that the transverse spin fluctuation depends on the distribution of the spectral

weight, which undergoes a change due to the renormalization, cf. Table 3.1. In par-

ticular, the renormalization leads to an increase of the transverse spin fluctuations in

the elementary ferromagnets.

3.4 Formal Discussion of the Goldstone-Mode Condition

In a ferromagnetic material without spin-orbit coupling the Goldstone-mode con-

dition relates the magnetization of a material to its spin excitation spectrum. In

the ferromagnetically ordered state the Goldstone mode is a consequence of the

spontaneously broken spin-rotation symmetry. The spin-rotation symmetry is spon-
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taneously broken because the spin polarization of the ferromagnetic ground state

destroys the spin-rotational symmetry, while the many-body Hamiltonian is spin-

rotationally invariant. According to the Goldstone theorem each spontaneously bro-

ken symmetry creates a long-range correlation which restores the broken symmetry.

In the case of the ferromagnetic order the spin-rotational symmetry is restored by

the magnons in the long-wavelength limit. These magnons lead to a homogeneous

rotation of the spin system without a cost of energy. In other words, a homogeneous

magnetic B field that acts as perturbation perpendicular to the spin polarization axis

causes a collective rotation of all the spins towards the field direction. Without spin-

orbit coupling the collective rotation can take place without a cost of energy, i.e., the

spin-wave excitation energy vanishes in the limit q ! 0. In practical ab initio calcula-

tions the Goldstone-mode condition is often violated. We investigate the Goldstone

violation within the many-body perturbation theory.

In the following discussion we focus on the details of the spontaneous breaking

of the spin-rotational symmetry and its relation to the Goldstone mode. In particular,

we discuss the existence of the Goldstone mode in the view of the magnetic response

function. As was shown for example by Kotani et al. [45] the magnetization is an

eigenfunction of the inverse magnetic response function of the interacting system

with eigenvalue zero. The time evolution of the time-ordered magnetic response

function (3.2.4) is

∂⌧R+�(r, r0; ⌧) = �i∂⌧ hT S+(r⌧)S�(r00)i
= hT [H, S+(r⌧)]S�(r00)i � ih[S+(r⌧), S�(r00)]i�(⌧), (3.4.1)

where ⌧ = t � t0 is the time difference between the action of the spin-raising and the

spin-lowering operator. The spin operators obey the commutation relation

[Si(rt), Sj(r0t0)] = i Â
k
✏i jkSk(rt)�(r � r0)�(t � t0), (3.4.2)

with the Levi-Civita symbol ✏i jk and i, j, k 2 {x, y, z}. The many-body Hamiltonian

H = H0 + SzB(r) (3.4.3)

contains a Zeeman term that couples the spin space to the real space. With this, the
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3.4. Formal Discussion of the Goldstone-Mode Condition

first term on the right-hand side of Eq. (3.4.1) evaluates to

⌦T [H, S+(r⌧)]S�(r00)
↵
= hT S+(r⌧)S�(r00)i B(r), (3.4.4)

where the commutation relation of the spin-raising operator has been used. Similarly,

the second term on the right-hand side of Eq. (3.4.1) is given by

h[S+(r⌧), S�(r00)]i�(⌧) = 2hSz(r⌧)i�(r � r0)�(⌧). (3.4.5)

A Fourier transformation as well as a spatial integration of Eq. (3.4.1) yields a relation

between the magnetic response function and the magnetization

�!
Z

dr0 R+�(r, r0;!) =
Z

dr0 B(r) R+�(r, r0;!)� m(r). (3.4.6)

This relation is satisfied for all values of !. For the Goldstone-mode condition the

limit! ! 0 is of special interest. The relation (3.4.6) allows to deduce the existence

of the magnon as a gapless excitation in this limit. In the ferromagnetic order an

infinitesimal magnetic perturbation fixes the spin-polarization axis of an interacting

electron system. In the limit of B(r) ! 0, the first term on the right-hand side of

that relation vanishes. As a consequence, the response function R+�(r, r0;!) must

contain a pole at zero frequency such that

m(r) = lim
!!0

!
Z

dr0 R+�(r, r0;!). (3.4.7)

The pole at zero frequency corresponds to the gapless magnon excitation. Therefore,

the Eq. (3.4.7) is called the Goldstone-mode condition for the (interacting) magnetic

response function. The Goldstone-mode condition implies that the magnetization is

an eigenfunction of the inverse magnetic response function with eigenvalue zero.

For the derivation of Eq. (3.4.7) the limit B(r) ! 0 has been taken first. If the

magnetic field is finite, the magnetic response function does not contain a magnon

pole in the limit ! ! 0. As a consequence, the left-hand side of equation (3.4.6)

cancels in the limit!! 0 and the relation reduces to

m(r) =
Z

dr0 B(r) R+�(r, r0; 0). (3.4.8)

This relation states that the value of the magnetization depends on the size of the ap-

plied magnetic B(r) field. In this case, the magnetic response function R+� might be
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3. Spin-Wave Excitations

considered as that of a mean-field system. An example is the spin-polarized Kohn-

Sham system. In the Kohn-Sham system the spin-dependent exchange-correlation

potential acts as an effective B(r) field which drives the non-interacting system into

its spin-polarized state, cf. Section 3.4.2. As a consequence, the non-interacting mag-

netic response function of a spin-polarized Kohn-Sham system does not contain a

magnon pole. It turns out that the non-interacting magnetic response function of

the Kohn-Sham system must obey a relation of the same form as Eq. (3.4.8) as a

requirement for the renormalized response function to fulfill the Goldstone condi-

tion (3.4.7). Therefore, for the Goldstone-mode condition to be fulfilled Eqs. (3.4.8)

and (3.4.7) have to be fulfilled simultaneously. As examples, we discuss the one-

band Hubbard model, the Kohn-Sham system, and the Coulomb hole and screened

exchange (COHSEX) mean-field system in the Sections 3.4.1 to 3.4.3.

3.4.1 One-Band Hubbard Model

The one-band Hubbard model is capable to describe itinerant ferromagnetic systems,

and it allows to study the Goldstone condition in detail [148, 149]. The Hubbard

Hamiltonian [17]

H = Â
R,R0

Â
↵

tR�R0c†R↵cR0↵ + U Â
R↵

nR↵nR�↵ (3.4.9)

contains the kinetic energy in form of a hopping parameter tR�R0 between the lattice

sites R and R0 and an on-site electron-electron repulsion U. Here, c†R↵ and cR↵ are the

electron creation and annihilation operators, respectively, for an electron at lattice site

R with spin↵, and nR↵ = c†R↵cR↵ denotes the site occupation number. The magnetic

response function is defined in analogy to Eq. (3.2.4) by

�+�(R, R0; ⌧) = �ihT S+
R (⌧)S�

R0(0)i (3.4.10)

with the spin creation S+
R = c†R"cR# and annihilation operator S�

R = c†R#cR" at lattice

site R. In a mean-field ansatz the interaction term of the Hubbard Hamiltonian (3.4.9)

is replaced by

U Â
R↵

nR↵nR�↵ ! U Â
R↵

nR↵hnR�↵i, (3.4.11)

where hnR�↵i is the average occupation number at lattice site R with spin �↵. With

the mean-field approximation for the one-band Hubbard model the equation of mo-
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3.4. Formal Discussion of the Goldstone-Mode Condition

tion (3.4.1) of the non-interacting magnetic response function is given by

�!Â
R0
�+�

0 (R, R0;!) = Um Â
R0
�+�

0 (R, R0;!)� m, (3.4.12)

with the site magnetization m. In the non-interacting case, the magnetic response

function does not contain a magnon pole. This is because the electrons do not in-

teract with each other so that a homogeneous magnetic perturbation perpendicular

to the spin polarization axis does not lead to a collective rotation of the spin system.

Therefore, in the Goldstone limit q ! 0 and!! 0 the relation (3.4.12) reduces to

�+�
0 (q ! 0,!! 0) =

1
U

. (3.4.13)

If the interaction between the electrons is taken into account in the Hartree-Fock

approximation, the interacting magnetic response function is

�+�(q,!) =
�+�

0 (q,!)

1 � U�+�
0 (q,!)

. (3.4.14)

Obviously, the non-interacting magnetic response function which obeys the relation

(3.4.13) ensures the fulfillment of the Goldstone condition as the magnetic response

function (3.4.14) has a pole in the Goldstone limit. On the other hand, the explicit

expression of the non-interacting magnetic response function in the Hartree-Fock

approximation is given by

�+�
0 (q,!) =

1
N Â

k

nk# � nk�q"
!�✏k�q +✏k � Eex � i⌘

. (3.4.15)

In the Goldstone limit the non-interacting magnetic response function �+�
0 reduces

to

�+�
0 (q ! 0,!! 0) =

m
Eex

. (3.4.16)

Thus, the Goldstone condition is fulfilled only if Eq. (3.4.13) and Eq. (3.4.16) are ful-

filled simultaneously. Therefore, the Goldstone-mode condition leads to an intimate

relation between the on-site interaction U, the site magnetization m, and the ex-

change splitting Eex. If the non-interacting magnetic response function �+�
0 (3.4.15)

is calculated consistently in the Hartree-Fock approximation, in which Eex = Um,

the Goldstone condition is identically fulfilled.
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3. Spin-Wave Excitations

3.4.2 Local-Spin-Density Approximation

The spin density-functional theory in the local-spin-density approximation (LSDA)

is a standard approach to describe magnetic materials. In view of the previous dis-

cussion the question arises how the ferromagnetic state described within the LSDA

relates to the Goldstone condition. The exchange-correlation potential v↵xc(r) is the

functional derivative of the exchange-correlation energy Exc[n"(r), n#(r)] with re-

spect to the spin density n↵(r) and, thus, depends on the spin state ↵, i.e., it differs

for the majority and the minority states. The spin-dependent exchange-correlation

potential acts as an effective magnetic field. The exchange-correlation potential can

be written as a sum of a spin-independent potential v0
xc(r) = 1/2(v"xc(r) + v#xc(r))

and a Zeeman term SzBxc(r) with

Bxc(r) =
1
2

⇣
v"xc(r)� v#xc(r)

⌘
, (3.4.17)

which drives the non-interacting electron system into a spin-polarized state. Due

to the non-interacting nature of the auxiliary Kohn-Sham system, it is the finite

exchange-correlation magnetic field Bxc(r) introduced through the spin-dependent

exchange-correlation potential that is responsible for the formation of a spin-

polarized state. The magnetic response function of the non-interacting Kohn-Sham

system is

�
i j
KS(r, r0; ⌧) =

�mi(rt)
�Bj

eff(r0t0)
, (3.4.18)

with the magnetization density mi(rt) and the effective magnetic field

Bi
eff(rt) = Bi

ext(rt) + Bi
xc(rt), (3.4.19)

which depends on an external magnetic field Bi
ext(rt). The Kohn-Sham magnetic

response function is the response of a system of non-interacting particles. The Kohn-

Sham Hamiltonian, implicitly defined in Eq. (2.2.11), allows to derive a relation

among the magnetization, the exchange-correlation Bxc field, and the non-interacting

magnetic response function in analogy to the Goldstone condition (3.4.8)

m(r) =
Z

dr0 Bxc(r) �+�
KS (r, r0; 0). (3.4.20)

The condition implies that the non-interacting Kohn-Sham response does not con-

tain a gapless magnon pole because of the finite-valued exchange-correlation mag-

46



3.4. Formal Discussion of the Goldstone-Mode Condition

netic field Bxc. In other words, the effective magnetic field introduced through the

exchange-correlation potential breaks the invariance of the Kohn-Sham Hamiltonian

under a transversal spin rotation. This is, in fact, the case for every mean-field Hamil-

tonian describing a spin-polarized state. In order to describe spin excitations of the

interacting system within the framework of density-functional theory, the magnetic

response function [158–161] can be calculated within the time-dependent density-

functional theory (TDDFT) [34,42,162–164]. The response function of the interacting

system

�i j(r, r0; ⌧) =
�mi(rt)
�Bj

ext(r0t0)
(3.4.21)

accounts for the self-consistently induced response by the system due to an external

magnetic perturbation. The magnetic response function obeys a Dyson-like equation

�i j(r, r0; ⌧)�1 = �
i j
KS(r, r0; ⌧)�1 � f i j

xc(r, r0; ⌧), (3.4.22)

where the interaction among the electron-hole pairs is described by the exchange-

correlation kernel f i j
xc(r, r0; ⌧). Usually, TDDFT calculations [34, 42, 162–164] make

use of the adiabatic local-density approximation (ALDA) [165] to the exchange-

correlation kernel, i.e., its time dependence is neglected. In the case of collinear

magnetism, the linear-response function as well as the exchange-correlation kernel

separates into a longitudinal and a transversal component. The transverse magnetic

response function �+� = �m+/�B+
ext implies the transverse exchange-correlation

kernel f+�
xc = �B+

xc/�m+ with �m+ = �mx + i�my and �B+ = �Bx + i�By. In the

ALDA the transverse exchange-correlation kernel [42] evaluates to

f+�
xc (r, r0; ⌧) =

v"xc(r)� v#xc(r)
m(r)

�(r � r0)�(⌧). (3.4.23)

The Goldstone condition demands that the response function diverges in the Gold-

stone limit (q,!) ! (0, 0). In this limit, the magnetization density is an eigenfunc-

tion of the inverse magnetic response function with eigenvalue zero

Z
dr0 d⌧ �+�(r, r0; ⌧)�1 m(r0) = 0. (3.4.24)

Therefore, for the Goldstone-mode condition to be fulfilled the Dyson equation of the

magnetic response function (3.4.22) requires that the transverse exchange-correlation
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3. Spin-Wave Excitations

kernel and the inverse Kohn-Sham response function are related such that

Z
dr0 d⌧ �+�

KS (r, r0; ⌧)�1 m(r0) =
Z

dr0 d⌧ f+�
xc (r, r0; ⌧)m(r0). (3.4.25)

This relation should be compared with the Goldstone-mode condition for the non-

interacting Kohn Sham response function (3.4.20). The Goldstone-mode condition

is fulfilled if the Kohn-Sham response function and the exchange-correlation kernel

fulfill the relations (3.4.20) and (3.4.25) simultaneously. In numerical implementa-

tions the Kohn-Sham magnetic response and the exchange-correlation kernel usu-

ally derive from different ground-state calculations [38]. As a result the Goldstone-

mode condition is numerically violated in these calculations. Lounis et al. [38] ensure

the Goldstone-mode condition by deriving the exchange-correlation kernel from a

magnetic sum rule instead of calculating it explicitly from Eq. (3.4.23), such that

Eq. (3.4.20) and Eq. (3.4.25) are fulfilled at the same time.

3.4.3 Coulomb Hole and Screened Exchange Approximation

The derivation of the magnetic response function in many-body perturbation the-

ory requires that the Green function is a self-consistent solution to the Dyson equa-

tion (3.2.7) with respect to a chosen self-energy approximation. We employ the

GW approximation with an additional static approximation for the screened inter-

action. Therefore, the resulting magnetic response function can be derived from the

Coulomb hole (COH) and screened exchange (SEX) self-energy, which is the static

limit of the GW approximation. A derivation of the COHSEX self-energy is presented

in the Appendix B. The Coulomb hole contribution

SCOH(r, r0;! = 0) =
1
2
�(r � r0)Wc(r, r0; 0) (3.4.26)

acts as a local and spin-independent potential. It is the potential induced by the static

polarization cloud of a quasiparticle. In contrast, the screened exchange self-energy

acts as a nonlocal and spin-dependent potential

S↵SEX(r, r0;! = 0) = �
BZ

Â
k

occ

Â
m
'↵km(r)'

↵ ⇤
km(r

0)W(r, r0; 0). (3.4.27)

The COHSEX self-energy

S↵COHSEX(r, r0) = SCOH(r, r0;! = 0) + S↵SEX(r, r0;! = 0) (3.4.28)
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3.4. Formal Discussion of the Goldstone-Mode Condition

is a static self-energy approximation, and, therefore, it is a Hermitian self-energy op-

erator. It corresponds to the Hartree-Fock exchange operator with the bare Coulomb

interaction replaced by the static screened interaction. Without spin-orbit coupling

the Coulomb hole contribution couples only charge degrees of freedom. It is the

screened exchange contribution which is responsible for the spin polarization. This

becomes apparent when the COHSEX self-energy is separated in a spin-independent

and a spin-dependent contribution by means of a Zeeman-like term

S↵COHSEX(r, r0) = S0
COHSEX(r, r0) + SzBCOHSEX(r, r0). (3.4.29)

The nonlocal magnetic BCOHSEX field corresponds to the difference of the screened

exchange potential for the majority and minority states

BCOHSEX(r, r0) = �
BZ

Â
k

occ

Â
m

⇣
'"

km(r)'
" ⇤
km(r

0)�'#
km(r)'

# ⇤
km(r

0)
⌘

W(r, r0). (3.4.30)

In other words, the screened exchange contribution brings the mean-field system into

its spin-polarized state. In contrast, the spin-independent Coulomb hole part does

not contribute to the effective magnetic field. The effective magnetic field allows

to derive a condition for the non-interacting magnetic response K+� of the COH-

SEX mean-field system in analogy to Eq. (3.4.8). The generalization of the Goldstone

condition to the nonlocal effective magnetic field of the COHSEX mean-field system

reads

m(r) =
Z

dr0 BCOHSEX(r, r0)K+�(r, r0; 0). (3.4.31)

The non-interacting magnetic response function K+� is conveniently calculated from

the Kohn-Sham Green function, e.g. by using the LSDA. This, however, brings a fun-

damental inconsistency into the formulation of the magnetic response function. Ob-

viously, the relation (3.4.31) is not fulfilled if the non-interacting magnetic response

function is calculated from a Kohn-Sham Green function. In this work, we have lifted

this fundamental inconsistency by calculating the non-interacting magnetic response

function from the properly renormalized Green function by means of the COHSEX

self-energy.

In addition to Eq. (3.4.31), the Goldstone condition of the magnetic response func-

tion R+� requires that the magnetization is an eigenfunction to the inverse magnetic
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response function, i.e.,

Z
dr0 R+�(r, r0; 0)�1m(r0) = 0. (3.4.32)

We make use of a Wannier function approach to calculate the magnetic response

function by means of an auxiliary four-point function as this allows to solve the

Bethe-Salpeter equation (3.3.12) by matrix inversion. The magnetic response func-

tion is obtained from the auxiliary four-point magnetic response function by the con-

traction (3.3.16). The Goldstone-mode condition (3.4.32) requires that at least one

eigenvalue of the matrix 1 � KW vanishes in the Goldstone limit. If this is not the

case, a gap error occurs in the Goldstone limit of the spin-wave dispersion. As we

will see, even though the fundamental inconsistency of using the Kohn-Sham Green

function is lifted, approximations in the numerical scheme cause a remaining gap

error. This numerical violation of the Goldstone condition might be caused by sev-

eral reasons: k-point set issues, basis set issues, and the on-site approximation of the

screened interaction to name a few. The influence of the k-point set is minimized by

employing the same k-point set and the same k-point integration method at every

stage of the calculation of the magnetic response function. The next section presents

the results of the investigation of the violation of the Goldstone-mode condition.

3.5 Results

3.5.1 Computational Details

In the framework of many-body perturbation theory the calculation of the mag-

netic response function is a multi-stage process. First, a self-consistent field calcu-

lation provides the electronic ground state within density-functional theory. The cal-

culations are performed with the local-spin-density approximation (LSDA) for the

exchange-correlation potential in the parameterization by Perdew and Zunger [90].

Alternatively, we use the generalized gradient approximation (GGA) in the parame-

terization by Perdew, Burke, and Ernzerhof [91]. We calculate the elementary ferro-

magnetic materials iron, cobalt, and nickel with the lattice constants 2.87 Å, 3.54 Å,

and 3.53 Å, respectively. At every stage of the calculation we sample the Brillouin

zone (BZ) with a 14 ⇥ 14 ⇥ 14 k-point grid. The BZ integrations are performed with

the tetrahedron method [157]. Next, the on-site static screened interaction is calcu-

lated in the random-phase approximation (RPA). For this, the screened interaction is
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calculated in the mixed-product basis [72, 108] using the LSDA or the GGA starting

point. To obtain the on-site contribution the screened interaction is projected onto

a Wanner product basis. The Lehman representation of the two-particle propagator

K allows its evaluation directly in the Wannier product basis [43, 166], cf. Eq. (3.3.7).

The Wannier functions which form the Wannier product basis must fulfill two condi-

tions: first, they must be sufficiently localized to enable an efficient real-space trun-

cation [43,166], and second the set of Wannier functions must reproduce the relevant

energetic subspace properly. The electronic d states close to the Fermi level are most

important for the formation of the spin-wave excitations. Therefore, it is that en-

ergy region which is relevant for the magnetic response. To put it another way, the

set of Wannier functions must be chosen such that the electron and the hole Green

function attaching to the vertices of the four-point quantities can couple properly. To

this end, we have chosen a set of nine maximally localized Wannier functions [46,47]

of s, p, and d character for each material. For their construction we employ the 18

energetically lowest mean-field single-particle states'↵kn(r). The choice of the num-

ber of bands is a compromise. On the one hand, the two-particle propagator is built

from the empty states and therefore the number of bands should not be too small

to ensure its adequate description. On the other hand, the set of Wannier functions

has to describe the low-energy electronic bands sufficiently accurately. Therefore,

the number of bands should not exceed the number of Wannier functions too much.

We have performed test calculations with two different sets employing the 12 or 24

lowest mean-field single-particle states which give very similar results. The Wan-

nier product basis is used to present the four-point quantities R(4) and K as well as

the on-site screened interaction W. This allows to solve for the magnetic response

function (3.3.12) by matrix inversion.

We consider the starting-point dependence of the spin-wave spectra for the ele-

mentary bulk ferromagnets iron, cobalt, and nickel. We refer here to the Green func-

tion with which the two-particle propagator K is calculated. In particular, we com-

pare the spin-wave spectra calculated with the LSDA, the GGA, and the Coulomb

hole screened exchange (COHSEX) Green function.

3.5.2 Coulomb Hole and Screened Exchange Approximation

The Bethe-Salpeter equation of the magnetic response function is derived under the

assumption that the Green function is the solution of the Dyson equation (3.2.7).

This means that the theoretical framework relies on a Green function that is a self-
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consistent solution to the self-energy S. We employ the self-energy in the GW ap-

proximation (3.2.10) which leads via �S/�B (3.2.17) to the magnetic response func-

tion in the ladder approximation (3.2.19), cf. Fig. 3.1. The relationship between the

screened interaction W and the two-particle propagator K is also apparent from the

Bethe-Salpeter equation (3.3.12) of the magnetic response function. To fulfill the

Goldstone-mode condition at least one eigenvalue of the matrix (1 � KW) must van-

ish exactly. Therefore, the two-particle propagator K = �iGG has to be related to

the screened interaction W. And, in fact, they are related if the Green function is

the self-consistent solution to the Dyson equation. In this case, the screened in-

teraction which is part of the self-energy enters the self-consistent solution of G.

The particular construction of the screened interaction, however, does not enter the

Bethe-Salpeter equation of the magnetic response function. Therefore, it is irrelevant

that the screened interaction in the random-phase approximation (RPA) itself is con-

structed using the Green function as the screened interaction merely appears as a

parameter. Thus, a consistent implementation of the underlying theory requires to

use the Green function that is self-consistently renormalized with the self-energy. At

first sight, the GW self-energy (3.2.10) appears to be the proper self-energy. How-

ever, the implementation of the magnetic response function makes use of a static

approximation for the screened interaction. For this reason, the proper self-energy

has to be constructed with the static screened interaction. This means, a proper

choice of the self-energy replaces the dynamical screened interaction W(r, r0; ⌧) of

the GW approximation (3.2.10) by an instantaneous interaction whose Fourier trans-

form would be the static screened interaction W(r, r0) = W(r, r0;! = 0). The re-

sulting screened exchange (SEX) self-energy S↵SEX(r, r0) (3.4.27) corresponds to the

Fock-term of the Hartree-Fock theory with the bare Coulomb interaction replaced

by the static screened interaction. The SEX self-energy is, however, not a good ap-

proximation. Instead, we can use the static limit of the GW approximation. The

static limit of the GW approximation involves, in addition to the SEX self-energy, a

Coulomb hole (COH) self-energy SCOH(r, r0) (3.4.26). The static limit of the GW ap-

proximation [71] is known as the Coulomb hole and screened exchange (COHSEX)

self-energy (3.4.28). The Coulomb hole term acts as a local and spin-independent po-

tential. If spin-orbit coupling is set aside, the COH self-energy couples only charge

degrees of freedom. As a consequence, it does not affect the transverse magnetic re-

sponse function. It is the SEX term which enters the derivation of the Bethe-Salpeter

equation with �S/�G = iW(0). This leads to a Bethe-Salpeter equation of the same
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form as Eq. (3.2.19). But, the dynamic screened interaction is replaced by the static

one, i.e., the additional static approximation to the screened interaction is not needed

anymore as the static limit is already taken in the COHSEX self-energy.

To obtain the properly renormalized Green function in terms of the COHSEX self-

energy, we must solve the Dyson equation self-consistently. Technically, the LSDA

solution forms the starting point of this procedure. We construct the Green function,

the polarization function, and the static screened interaction which, in turn, are used

to calculate the COHSEX self-energy from the LSDA energies and wave functions.

The COHSEX self-energy is, due to its frequency independence, a Hermitian opera-

tor which defines a new mean-field system. This allows to calculate the quasiparticle

equations

h0(r)'↵km(r) +
Z

dr0 S↵COHSEX(r, r0)'↵km(r
0) = E↵km'

↵
km(r) (3.5.1)

in a very similar way as the single-particle equations of the Kohn-Sham density-

functional theory. In particular, the single-particle equations are iterated while the

matrix

h'↵km|S↵COHSEX � v↵xc|'↵km0 i (3.5.2)

remains fixed. This process updates the density and the local effective potential in

each iteration. The resulting new set of wave functions and energies are then used

to construct a new Green function, polarization function, screened interaction, and

COHSEX self-energy. These steps are repeated until self-consistency is reached.

For the calculation of the magnetic response function we employ the LSDA, the

GGA, or the COHSEX mean-field solution of the 3d ferromagnets bcc iron, fcc cobalt,

and fcc nickel as starting point. The density of states (DOS) for the three elemen-

tary ferromagnets is shown in Fig. 3.4 for all three starting points. The DOS spectra

look similar and all approaches describe the three materials qualitatively correct as

ferromagnetic metals. However, there are quantitative difference among the three

approaches. Strikingly, for all three materials the minority 3d states appear higher in

energy within the GGA approach compared to the LSDA and the COHSEX approach.

The LSDA occupied-band width shrinks, in particular for Co and Ni, compared

to the COHSEX occupied-band width. In addition, the majority spin and minor-

ity spin states are relatively shifted to lower values. The exchange splittings, listed

in Table 3.2 for selected single-particle states, support these observations. The ex-

change splittings found with the COHSEX approach are systematically smaller than
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Figure 3.4: Density of states for the bulk 3d elementary ferromagnets iron, cobalt,
and nickel employing the LSDA (blue dashed line), the GGA (black dotted line), and
the COHSEX (red solid line) approach. The upper and lower panel show the majority
and minority spin channel, respectively. The Fermi level is set to zero.
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LSDA LSDA corr. GGA GGA corr. COHSEX Expt.
m [µB] Fe 2.19 2.16 2.26 2.13 2.10 2.08a

Co 1.60 1.49 1.68 1.51 1.46 1.52a

Ni 0.58 0.51 0.62 0.50 0.45 0.52a

Eex [eV] Fe G0
25 1.8 1.7 2.0 1.6 1.5 2.1b

H25 2.1 2.0 2.3 1.9 1.7 1.8c

P4 1.4 1.3 1.4 1.0 1.1 1.5d

Co G12 1.7 1.3 1.6 1.0 1.1 1.1e

G0
25 1.4 1.0 2.0 1.4 1.2 1.1e

Ni L3 0.5 0.3 0.6 0.3 0.4 0.3d

X2 0.6 0.4 0.6 0.2 0.3 0.2f

Table 3.2: The spin magnetic moment m and the exchange splitting Eex calculated
within the LSDA, the GGA and the self-consistent COHSEX approach and corre-
sponding experimental values for the 3d transition metals. In addition, the values
LSDA corr. and GGA corr. are given which correspond to the corrected LSDA and
the corrected GGA Green function which yield spin-wave dispersions respecting the
Goldstone condition. Magnetic moments are obtained from the sum rule (3.3.29).
Parts of this table were published [51], ©2016 American Physical Society. Experimen-
tal values are taken from references a [167, 168], b [169–172], c [172], d [173], e [174],
and f [175].

the LSDA and GGA ones. In most cases, the GGA exchange splittings are larger than

the LSDA values. The magnetic moments found with the three approaches show a

similar behavior. While the LSDA and the GGA approach, both slightly overesti-

mate the magnetic moments, the COHSEX approach corrects the magnetic moment

to smaller values even slightly too small in the case of cobalt and nickel. The DOS

spectra for the three ferromagnets suggest that the LSDA results are closer to those

obtained with the COHSEX approach compared to the GGA approach, cf. Fig. 3.4.

The magnetic moment and the exchange splittings, shown in Table 3.2, support this

presumption. Recently, the electronic structure of iron and nickel has been investi-

gated by means of a one-shot COHSEX self-energy calculation using the linearized

muffin-tin orbital (LMTO) method [176]. Our results support their findings only

partly. While their calculations yield a COHSEX magnetic moment smaller than the

LSDA value in case of iron, for nickel they find the COHSEX magnetic moment to be

larger than the LSDA value.

3.5.3 Spin-Wave Dispersions

Spin-wave dispersions calculated in the many-body perturbation theory depend on

the chosen starting point. We analyze this starting-point dependence for the spin-
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Figure 3.5: Starting-point dependence of the spin-wave spectra for Fe, Co, and Ni
obtained with the LSDA (blue triangles), corrected LSDA (black circles), and COH-
SEX (red crosses) Green function. The spin-wave dispersion is shown along the high-
symmetry line P ! G ! N and L ! G ! X for the bcc and fcc lattice structure, re-
spectively. This figure was published recently [51], ©2016 American Physical Society.

wave spectra for the 3d elementary ferromagnetic metals iron, cobalt, and nickel.

Here, we refer to the mean-field approximation with which the Green function and

the two-particle propagator K is calculated. The first step of a spin-wave disper-

sion calculation is the calculation of the ground state conveniently obtained in the

LSDA or the GGA. The ground-state calculation yields already a set of single-particle

states which allows to calculate the Kohn-Sham Green function from the correspond-

ing single-particle wave functions and energies. The spin-wave dispersions result-

ing from the LSDA Green function are shown in Fig. 3.5 as blue triangles for the

3d elementary ferromagnets. The dispersions correctly obey a quadratic behavior

around the center of the BZ, though the dispersions also exhibit a gap error: the spin-

wave excitation energy does not vanish at the G point as it should according to the

Goldstone-mode condition. The violation of the Goldstone-mode condition might be

caused by a number of reasons. First, the numerical realization of the magnetic re-

sponse function makes use of an on-site approximation for the screened interaction.

The on-site approximation does not allow the electron-hole pairs to separate further

than one lattice site while they can propagate over arbitrarily many lattice sites. This

means the electron-hole pairs interact with each other only if they are located at the

same lattice site. The on-site approximation is justified if the screened interaction

falls off sufficiently fast so that the off-site contribution to the interaction can be ne-

glected. The assumption of the screened interaction’s short-range behavior seems to

be justified for the ferromagnetic metals Fe, Co, and Ni. We have tested the on-site

approximation for those materials and we found that the nearest-neighbor interac-

tions are typically 98% smaller than the corresponding on-site terms, cf. right panel

of Fig. 3.2. Second, the numerical realization makes use of a formulation in a Wannier
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�!LSDA [meV] �!GGA [meV] �!COHSEX [meV]
Fe 75 289 11
Co 294 457 90
Ni 155 242 32

Table 3.3: Starting-point dependence of the gap error �! in the Goldstone limit q !
0 for Fe, Co, and Ni. The gap errors are given for three different starting points: LSDA
in the parameterization of Perdew and Zunger [90], GGA in the parameterization of
Perdew, Berke, and Enzerhof [91], and COHSEX [71] self-energy approximation. This
table was published recently [51], ©2016 American Physical Society.

basis. The choice of the Wannier basis effectively restricts the band summation for

the Green function as well as for the two-particle propagator K to those bands that

are used in the construction of the Wannier functions. We have chosen the 18 ener-

getically lowest single-particle states for the construction of the Wannier basis. The

choice of the number of single-particle states is a compromise between an accurate

description of the low-energy physical properties and the unoccupied band summa-

tion of the two-particle propagator. A third possible reason for the violation of the

Goldstone mode is related to the Wannier basis. The Wannier product basis used to

solve the Bethe-Salpeter equation of the four-point magnetic response function might

be inappropriate for representing plane waves with small Bloch vector, in particular

the constant function which is relevant for the Goldstone mode limit q ! 0. In ad-

dition, convergence issues related to the k-point set, the empty-state summation, et

cetera might contribute to the gap error. Though there are a number of issues related

to the numerical realization we focus, in the following, on a more fundamental incon-

sistency in the chosen approach. It is the choice of the starting point, i.e., the LSDA

Green function which brings in a fundamental inconsistency. The Bethe-Salpeter

equation of the magnetic response function is derived under the assumption that the

Green function is the solution of the Dyson equation. The Bethe-Salpeter equation

of the magnetic response function with a static screened interaction mediating the

correlation among the electron-hole pairs derives from the Green function which is

the self-consistent solution to the COHSEX self-energy. Consequently, to remain con-

sistent with the theoretical framework, we must employ a Green function which is

self-consistently renormalized by means of the COHSEX self-energy. The resulting

spin-wave dispersions calculated from the COHSEX Green function are shown as

red crosses in Fig. 3.5. The dispersions still show a gap error at the G point. But,

the use of the self-consistent COHSEX Green function substantially reduces the gap

error compared to the LSDA value. The reduction of the gap error is summarized
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Figure 3.6: Same as Fig. 3.5 for a GGA starting point.

in Table 3.3 for the three materials. It amounts to 85%, 69%, and 79% in the case of

bcc iron, fcc cobalt, and fcc nickel, respectively. As a comparison we have performed

the same analysis for a GGA starting point with the exchange-correlation potential

parameterized by the functional of Perdew, Berke, and Enzerhof (PBE) [91]. The re-

sulting spin-wave dispersions, shown as blue triangles in Fig. 3.6, correctly obey a

quadratic dispersion in the vicinity of the BZ center and again a gap error occurs. The

gap errors are even larger than the LSDA values for all three materials, see Table 3.3.

The ansatz presented so far suffers from its unfavorable computational effort.

It requires the self-consistent mean-field solution of the COHSEX self-energy calcu-

lated on a fine k-point set as a prerequisite. Therefore, the ansatz is far more com-

putational demanding than a Kohn-Sham starting point either in the LSDA or in

the GGA. Despite the fact that the gap error strongly depends on the chosen start-

ing point, the spin-wave dispersions obtained with the LSDA, the GGA, and the

COHSEX Green function are very similar. The similarity of the spin-wave disper-

sions raises the question if the Kohn-Sham Green function can be corrected such that

the spin-wave dispersion respects the Goldstone condition. The one-band Hubbard

model allows to analyze the Goldstone-mode condition in detail, cf. Section 3.4.1. In

the Hartree-Fock approximation the magnetic response function appears as a simple

algebraic equation (3.4.14) in the form of Eq. (3.3.12) with the screened interaction

W replaced by an on-site interaction parameter U. The Goldstone-mode condition

obeys the simple relation

1 =
U m
Eex

, (3.5.3)

where we have used that the two-particle propagator simplifies to K = m/Eex in

the Goldstone limit, with the site magnetization m and the exchange splitting Eex.

The Goldstone-mode condition is identically fulfilled if the two-particle propagator

is calculated in the Hartree-Fock approximation in which the exchange splitting is
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Eex = U m. The simplicity of the Goldstone-mode condition within the one-band

Hubbard model invites to use one of its constituents as an adjustable parameter. The

on-site interaction parameter U plays the role of the screened interaction W, which is

a matrix obtained within the RPA. Thus, the screened interaction cannot be corrected

easily by a single parameter. The magnetization m results from a self-consistent field

calculation employing either the LSDA or the GGA. Therefore, the magnetization

cannot be changed straightforwardly. In contrast, the exchange splitting Eex, which

can be regarded as the difference between the majority and minority bands, can be

changed easily. The band alignment can be adjusted once a Kohn-Sham solution

has been found. The adjustment of the exchange splitting changes the Kohn-Sham

Green function via the adjustment of the Kohn-Sham energies, while the screened

interaction remains unchanged. In Section 3.5.2 we found that an essential effect of a

self-consistent COHSEX calculation is the renormalization of the exchange splitting

of the LSDA solution and the GGA solution, respectively. Therefore, the adjustment

of the exchange splitting can be hoped to mimic the effect of the renormalization of

the Green function. We choose the exchange splitting as an adjustable parameter by

rigidly shifting the majority and minority bands relative to each other

✏̃"/#
km = ✏"/#

km ± DEex

2
(3.5.4)

in such a way that the Goldstone-mode condition is fulfilled. The two-particle prop-

agator K is then constructed with the Kohn-Sham Green function corrected by means

of the adjustment of the exchange splitting. Karlsson et al. [44] and Şaşıoğlu et al. [43]

have also used the adjustment of the exchange splitting for the calculation of the

spin-wave dispersion. They have applied it, however, as an ad hoc correction in order

to fit the exchange splitting to the experimental value. However, Şaşıoğlu et al. [43]

anticipates that a self-consistent calculation of the proper mean-field solution would

bring about an adjustment of the exchange splitting. Our results of the self-consistent

calculation of the COHSEX Green function, see Section 3.5.2, confirm this conjecture.

The spin-wave dispersion calculated with the corrected Kohn-Sham Green func-

tion respect the Goldstone condition and also they are close to the COHSEX results

for the three materials as shown in Fig. 3.5 for the corrected LSDA and in Fig. 3.6 for

the corrected GGA Green function. The relative shift of the majority spin and minor-

ity spin band alignment is such that the exchange splittings decrease, see Table 3.4.

The adjustment of the exchange splitting that is needed to correct the GGA Green

function is systematically larger than that of the LSDA Green function. This corre-
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DELSDA
ex [meV] DEGGA

ex [meV]
Fe 0.10 0.40
Co 0.39 0.60
Ni 0.21 0.34

Table 3.4: Adjustment of the exchange splitting DEex for the LSDA and GGA Green
function that is applied so that the spin-wave dispersions fulfill the Goldstone-mode
condition. The relative shift in the band energies is such that the exchange splittings
decrease.

sponds to our finding that among the LSDA, the GGA, and the COHSEX approach

the exchange splittings are largest in the GGA approach followed by the LSDA ap-

proach, cf. Table 3.2. The adjustment of the exchange splittings leads, in turn, to an

adjustment of the Fermi level. As a consequence, the correction scheme affects the

ground state magnetic properties as well. Interestingly, the resulting magnetic mo-

ments and exchange splittings of the corrected Kohn-Sham Green function turn out

to be very close to the corresponding COHSEX values, see Table 3.2. The proxim-

ity of COHSEX and the corrected LSDA as well as the corrected GGA values can

be regarded as an a posteriori justification of the adjustment of the exchange split-

ting (3.5.4).

Among the three elementary ferromagnets, fcc cobalt appears as a problematic

case. First, its gap error is largest for all mean-field starting points. Second, the

COHSEX spin-wave dispersion shows an unusually flat behavior at the G point. For

example, if the lattice constant is decreased by less than 1% the curvature of the spin-

wave dispersion can even turn slightly negative when employing the GGA Green

function indicating a magnetic instability. Similar peculiarities of the magnetic prop-

erties of fcc cobalt have been found in earlier density-functional theory studies. For

example Janak [177] report two competing magnetic ground states with low and high

magnetic moment. In addition, Moruzzi et al. [178, 179] found a strong dependence

of the magnetic properties on the lattice constant. They showed that a reduction of

the lattice constant by 5% leads to a collapse of the magnetic moment.

Şaşıoğlu et al. [43] have employed a different correction scheme to enforce the

Goldstone condition. As a pragmatic approach they used a scaling parameter � to

change the screened interaction W ! �W such that the Goldstone-mode condition

is fulfilled. The on-site approximation leads to a q independent screened interac-

tion and therefore, their correction scheme affects the spin-wave dispersion through-

out the BZ. The scaling of the screened interaction is a simple a posteriori correction

scheme. In contrast, the adjustment of the exchange splitting changes the Green
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Figure 3.7: Spin-wave spectra for Fe, Co, and Ni that have been calculated with two
different Goldstone-mode correction schemes: by adjusting the exchange splitting
(black circles) and by scaling the screened interaction W (green squares) as suggested
in Ref. [43]. Experimental values [151,180,181] are shown for comparison. This figure
was published recently [51], ©2016 American Physical Society.

function itself. The adjustment of the exchange splitting leads to a change of the

Fermi level, which requires to recalculate the Green function in an iterative way. Ad-

ditionally, the scaling of the screened interaction lacks a theoretical justification as

the screened interaction matrix is calculated from the RPA and it cannot be changed

easily by a simple scaling parameter. Nevertheless, it is worthwhile to compare the

spin-wave dispersions resulting from the different correction schemes. Figure 3.7

shows the spin-wave dispersions obtained with the corrected LSDA Green func-

tion, the LSDA results with a scaled interaction and experimental data from neutron

scattering experiments. The two correction schemes yield rather similar spin-wave

dispersions with the exception of Ni. In this case, the adjustment of the exchange

splitting yields a spin-wave dispersion which is closer to experiment. The result is

in accordance with previous findings by Karlsson et al. [44] and Şaşıoğlu et al. [43].

Moreover, the spin-wave dispersions resulting from the scaling of the screened inter-

action W tend to be stiffer, in particular for nickel and, to a lesser degree, for cobalt.

3.6 Summary

In this chapter we have discussed the dynamical magnetic response function in the

many-body perturbation theory (MBPT), which is implemented in the all-electron

full-potential linearized augmented-plane-wave (FLAPW) method. The magnetic

response function in the ladder approximation derives from the GW approximation

with an additional static approximation for the screened interaction. Within the lad-

der approximation the magnetic response function is the solution of a Bethe-Salpeter

equation. Its first principles calculation allows to access single-particle Stoner exci-
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tations and collective spin-wave excitations on the same footing. We have focussed

our discussion on the long-wavelength limit of the spin-wave spectra for the bulk el-

ementary ferromagnetic metals iron, cobalt, and nickel. The long-wavelength limit is

of special importance as it is related to the Goldstone theorem. The Goldstone theo-

rem states that due to the spontaneously broken spin-rotation symmetry in ferromag-

netic materials there exists a gapless excitation in the long-wavelength limit q ! 0.

We discussed the Goldstone theorem in the view of the magnetic response function.

It turned out that the Goldstone-mode condition for the magnetic response function

implies a condition for the non-interacting magnetic response function. In ab initio

calculations the Goldstone-mode condition is usually numerically violated giving

rise to a gap error in the spin-wave dispersion. We have figured out that the choice

of the starting point might bring a fundamental inconsistency into the underlying

theory. A consistent numerical realization must use the self-consistently renormal-

ized Green function by means of the Coulomb hole and screened exchange (COH-

SEX) self-energy, which is the static limit of the GW self-energy. The self-consistent

COHSEX calculations bring about an overall reduction of the exchange splittings

compared to the Kohn-Sham values, often leading to a better agreement with ex-

periment. We have shown that the gap error is indeed substantially reduced when

using the COHSEX Green function instead of either the local spin-density approxi-

mation (LSDA) or the generalized gradient approximation (GGA) one. A correction

scheme, motivated by the spin-wave solution of the one-band Hubbard model in the

Hartree-Fock approximation, allows to cure the fundamental inconsistency of choos-

ing a Kohn-Sham Green function. The correction scheme uses the exchange split-

ting of the Kohn-Sham system as an adjustable parameter. The Kohn-Sham Green

function is changed in such a way that the spin-wave dispersion fulfills the Gold-

stone condition. The resulting spin-wave dispersions are closer to the corresponding

COHSEX than to the original LSDA or rather the original GGA results. The same can

be said about the magnetic properties, i.e., the magnetic moment and the exchange

splittings, of the corrected LSDA and the corrected GGA Green function. The cor-

rected Kohn-Sham Green function comes at the numerical cost of an ordinary Kohn-

Sham mean-field calculation. The Kohn-Sham Green function corrected in such a

way that the Goldstone-mode condition is fulfilled opens up the possibility of effi-

cient ab initio many-body perturbation theory calculations of spin excitations. We use

this correction scheme for the calculation of the electron-magnon interaction within

the GT self-energy approximation in the elementary bulk ferromagnets.
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4.1 Introduction

The theoretical understanding of realistic materials has gained a lot of insight from

ab initio density-functional theory (DFT) calculations. Its implementation employing

(semi-) local-density approximations (LDA) is exact in the limit of a homogeneous

electron gas. The properties of weakly correlated materials are reproduced well in the

LDA approach. Angle-resolved photoelectron spectroscopy (ARPES) measurements,

however, give evidence that even in simple cases there exists a systematic difference

between the experimental band structure and its prediction by means of a LDA cal-

culation. In the case of bulk sodium the measured band width is 2.5 eV [182] and

2.65 eV [183], respectively, while LDA predicts a band width of 3.2 eV. It turned out

that many-body corrections to the LDA substantially reduce the band width [184].

Employing the GW approximation, the band width is in good agreement with the ex-

periment [185,186]. Yet, the GW approximation underestimates the measured quasi-

particle lifetimes in sodium. To account for this, Lischner et al. [187] employed a

self-energy correction beyond the GW approximation that accounts for spin fluctua-

tions. While the spin fluctuations hardly affect the occupied-band width, they give

an important contribution to the quasiparticle lifetime. This demonstrates even for

simple metals such as sodium the importance of many-body effects for a comprehen-

sive understanding of material properties.

The 3d transition metals form a class of intermediately correlated materials in

which localized d states close to the Fermi level are embedded in a free-electron-

like band structure. The stronger the correlation among the electrons the more pro-

nounced are the systematic differences of LDA to experiment. Among the 3d tran-

sition metals Ni is a prominent example as the results from the local-spin-density
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approximation (LSDA) approach show considerable deviations from experiment.

While the ground-state properties such as the magnetic moment [188] obtained from

LSDA are in rather good agreement with experiment, the LSDA band structure sig-

nificantly deviates from ARPES measurements. The measured 3d-band width is

about 30% smaller than the DFT prediction [173, 189–192]. In iron, the experimen-

tal band width [193–195] is 10% smaller than the DFT prediction [176]. The LSDA

also overestimates the exchange splitting. Nickel is again an extreme case where

the exchange splitting is twice as large as measured in experiment [173, 190–192].

In addition, x-ray photoemission spectroscopy (XPS) reveals satellite structures in

the density of states (DOS) of nickel and iron at 6 eV [191, 196–198] and 3.2 eV [199]

binding energy, respectively. These satellites are not reproduced in the LSDA ap-

proach. Furthermore, experiments indicate a strong broadening of the quasiparticle

peaks at the bottom of the d bands due to many body effects, which are not acces-

sible in an independent-electron theory such as DFT. In cobalt, the majority spin

quasiparticle peaks disappear for binding energies larger than 2 eV [61]. The strong

broadening of the quasiparticle peaks as well as the satellite structures in the den-

sity of states emphasize the importance of many-body effects for the transition met-

als. The GW approximation partly cures the shortcomings of the LSDA approach.

Aryasetiawan [200] has shown that treating nickel within the GW approximation

yields a 3d-band width in good agreement with experiment. This result has been

confirmed by Friedrich et al. [72]. They find a reduction of the band width from

4.0 eV in LSDA to 3.2 eV in the GW approach in accordance with the experimental

finding [173, 189–192]. In iron, the situation is similar. While the band width, ex-

perimentally found to be 3.3 eV [193–195], is overestimated in the LSDA approach,

the GW result is in good agreement with experiment [176]. The GW approximation,

however, does not account for the description of satellites and also the exchange

splitting is hardly improved. Aryasetiawan [200] argues that the overestimation of

the exchange splitting and the missing satellite structure are related features that

need a treatment beyond the GW approximation taking into account particle-particle

scattering. Penn [201] and Liebsch [202] have shown within the Hubbard model em-

ploying a T-matrix formulation that the hole-hole scattering leads to the occurence

of the 6 eV satellite in nickel and, furthermore, it gives rise to a reduction of the ex-

change splitting. Springer et al. [203] have applied an ab initio T-matrix theory to

the 6 eV satellite of nickel. Indeed they found the satellite structure due to multiple

hole-hole scattering processes and a significant reduction of the exchange splitting.
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Zhukov et al. [67–70,204] employed a combined GW and T-matrix (GW+T) approach

that accounts for non-spin-flip and spin-flip excitations in metallic systems to study

lifetime effects of excited electrons. They found that the non-spin-flip scattering

gives an important contribution to the inverse lifetime of the minority excited elec-

trons. While the spin-flip scattering of electronic states in nickel appears to be weak

and independent of the spin state, in iron the spin-flip scattering causes a strong

reduction of the lifetimes of the minority states compared to the majority states.

Zhukov et al. [67] conclude that the inclusion of spin-flip processes improves the

agreement of the minority spin lifetimes in iron between theory and experiment [60].

Interestingly, they find that free-electron-like minority states and all the majority ex-

cited electron states are weakly affected by spin-flip scattering in iron.

Recent high-resolution ARPES measurements reveal further correlation effects

in the transition metals which are not fully accounted for in the GW approach and

which have not been studied yet within the GW+T approach. Higashiguchi et al.

[205] conducted a high-resolution ARPES measurement of ferromagnetic nickel.

They observed a kink structure in the energy band dispersion at 40 meV binding

energy, which they attributed to the electron-phonon interaction. They emphasize,

however, that the observed effective-mass enhancement indicates many-body effects

beyond the electron-phonon interaction. While the occurrence of kink structures due

to the coupling of electrons to phonons is well understood, there is an ongoing debate

on the origin of kink structures at higher binding energies. Hofmann et al. [59] found

a kink structure at an unusually high binding energy of 300 meV. Schäfer et al. [58]

found a similar kink structure for a surface state of iron at 160 meV binding en-

ergy. In both cases, the kink structures are attributed to a coupling mechanism of

the electrons to spin-wave excitations. Schäfer et al. [206] found in a subsequent

ARPES study on bulk iron a strong effective-mass enhancement of bulk states when

compared to a DFT calculation employing the generalized gradient approximation

(GGA). They discuss the experimentally measured effective masses in view of corre-

lation effects and the coupling of electrons to magnetic excitations.

In strongly correlated materials, on the other hand, kink structures have been

found which are not related to an electron-boson coupling mechanism. Calculations

based on pure electron-electron interactions employing the dynamical mean-field

theory (DMFT) [207–209] predicted a kink structure in the electron dispersion for

any (strongly) correlated material, showing two separate regimes of quasiparticle

renormalization [210]. Held et al. [211] explain the physical mechanism behind the
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emergence of such kinks. The combined LDA+DMFT approach [212–215] applied to

SrVO3 yields a kink structure at the energy of 150 meV below the Fermi level [216]

as observed experimentally [217]. The LDA+DMFT approach can be viewed as the

dynamic extension of the LDA+U approach [212], which was an early attempt to

correct the LDA by a static mean-field Hubbard U term for localized states. Un-

fortunately, the LDA+U approach and the LDA+DMFT approach rely on additional

parameters, most notably the Hubbard U. Its calculation from first principles re-

lies, usually, on one of two approaches, either on the constrained LDA [218] or the

constrained random-phase approximation [219, 220].

The application of the LDA+DMFT approach to iron leads to a strong damp-

ing of the majority quasiparticle states below 1 eV binding energy [65]. A com-

bined analysis of an ARPES experiment and a LDA+DMFT calculation on iron con-

ducted by Sánchez-Barriga et al. [62] indicates that the LDA+DMFT approach im-

proves the description of correlation effects. The mass renormalization, however,

is too small within the LDA+DMFT approach. A subsequent investigation of Fe,

Co, and Ni [63, 64] revealed that for a quantitative agreement between experiment

and theory more sophisticated many-body calculations are needed. In particular,

the linewidth of the quasiparticle peaks obtained within a LDA+DMFT approach

tends to be underestimated compared to experiment. Grechnev et al. [66] found in

a LDA+DMFT study for Fe, Co, and Ni that the main correlation effects are present

in the majority spin channel. In particular, they find a strong quasiparticle broaden-

ing for the majority hole states. While the LDA+DMFT approach improves the de-

scription of correlation effects, it has conceptual problems such as a double-counting

correction and the dependence on parameters. Biermann et al. [221] proposed a

GW+DMFT scheme, which is derived from a free-energy functional introduced by

Almbladh [222]. In a self-consistent implementation of the GW+DMFT scheme the

Hubbard U interaction and the double-counting correction are uniquely defined. A

first application of the GW+DMFT approach to real materials has been achieved by

Tomczak et al. [223]. Their study of SrVO3 and subsequent investigations [224–226]

show that the GW+DMFT scheme inherits the advantages of both theories. The non-

local GW self-energy accounts for the reduction of the band width, overestimated

in the LDA+DMFT scheme, and the local self-energy leads to a renormalization of

the quasiparticle energies with the emergence of kink structures in the vicinity of the

Brillouin zone (BZ) center.

The DMFT approach, either combined with LDA or with GW, is capable of de-

66



4.2. Theory

scribing kink structures in strongly correlated materials. In intermediately correlated

systems such as the transition metals, however, the emergence of kink structures has

not been reported, yet. Just as well, kink structures have not been studied within

the GW+T theory so far. So, it remains an open question what the origin of the kink

structures in the transition metals [58,59] is. Moreover, the reason for the strong mass

renormalization as well as the strong quasiparticle broadening observed experimen-

tally [61–64,206] in these materials is still under debate. In the following, we address

these questions by means of a T-matrix approach. The next section gives a deriva-

tion of the T-matrix formulation of the self-energy beyond the GW approximation.

Section 4.3 lays out the details of the implementation. The quasiparticle concept is

reviewed in Section 4.4, and a formal discussion of the previously introduced GT

self-energy is given in Section 4.5. The computational details of the calculations are

presented in Section 4.6. We show results for iron, cobalt, and nickel in Section 4.7,

and finally Section 4.8 concludes our findings.

4.2 Theory

The GW approximation has become a standard method in electronic structure cal-

culations. It successfully reproduces many of the excited-state properties of a wide

range of materials and usually improves over the results obtained from LDA calcu-

lations. Nevertheless, the GW approximation has also some shortcomings, e.g. one-

shot GW calculations of the transition metals neither improve the exchange split-

ting nor do they give rise to satellite structures. In addition, plasmarons, which

are plasmons dressed with clouds of eletrons and which were predicted by Hedin

and Lundqvist [74, 227–230], appear at the wrong energetic position within the GW

approximation. To account for this, one needs to go beyond the GW approxima-

tion. One alternative is to combine many-body perturbation theory with the DMFT,

which adds a local self-energy to the GW approximation in the so-called GW+DMFT

approach [221]. To go beyond the GW approximation within the framework of many-

body perturbation theory one can either improve the Green function itself or employ

additional self-energy diagrams.

The cumulant expansion [231–233] is a diagrammatic expansion of the Green

function. It is an intuitive way to describe an electron-boson coupling mechanism.

The cumulant expansion has first been applied to study x-ray spectra of core elec-

trons [234–236]. Bergersen et al. [237], Minnhagen [238], and Hedin [231] extended
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the formalism to valence electrons. The GW plus cumulant approach applied to

sodium and aluminum metal [232] and to semiconductors [233] gives rise to multiple

plasmon satellites, which are also called plasmarons, electronic polarons [239, 240],

or plasmonic polarons [241, 242]. Recently, Caruso et al. [241, 242] have shown that

the electron-plasmon coupling in the GW plus cumulant approach leads to the occur-

rence of a plasmonic polaron band structure. These new bands appear blueshifted

by the plasmon energy from the electronic band structure and strongly broadened.

The diagrammatic expansion of the self-energy itself is another alternative to go

beyond the GW approximation. The GW approximation results from the first itera-

tion of the Hedin equations, where vertex corrections are neglected. The application

of first-order vertex corrections to silicon and diamond [243, 244] indicates that ver-

tex corrections are small in these materials. Recently, Ren et al. [245] have proposed a

second-order screened exchange (SOSEX) correction to the GW approximation which

improves the highest occupied and lowest unoccupied molecular orbitals in benzene

and tetracyanoethylene. Strinati [246] was one of the first who introduced the T-

matrix approach to study optical properties of semiconductors. The T-matrix ap-

proach is nowadays routinely applied to study particle-hole excitations, i.e., exciton

excitations [247–252] and spin-wave excitations [43,166,253]. The T-matrix approach

has also been employed as a vertex correction to the self-energy [67–69, 203, 204]

known as the GW+T approach. These vertex corrections, however, entail double-

counting corrections to account for diagrams present in the GW self-energy as well

as in the additional GT self-energy. Romaniello et al. [254] gave an alternative deriva-

tion of the T-matrix approach to the self-energy allowing to combine the GW approx-

imation and higher-order diagrams without the need of double-counting corrections.

We propose a self-energy relying on the T-matrix approach that accounts ex-

plicitly for spin-flip processes motivated by the expansion of the Hedin self-energy

that allows a combination with the GW approximation without the need of double-

counting corrections. The self-consistent solution of the Hedin equations [71], a set

of five integro-differential equations, solves the many-body problem exactly. The

self-energy takes the form

S↵�(12) = i Â
�

Z
d3 d4 G↵�(14)W(1+3)G��(42; 3), (4.2.1)
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where the vertex function is defined as

G↵�(12; 3) = ��G�1
↵� (12)

�Ueff(3)
= �(12)�(13)�↵� +

�S↵�(12)
�Ueff(3)

(4.2.2)

with the total effective potential Ueff (2.1.28), cf. Eqs. (2.1.30) and (2.1.31). Spin indices

are denoted by Greek characters. Neglecting vertex corrections �S/�Ueff leads to

the GW approximation (2.1.36). In this approximation the screened interaction W is

calculated in the random-phase approximation (RPA) [255–257]. This means that the

polarization of the system is approximated by non-interacting electron-hole pairs

P(12) = �i Â
↵,�

G↵�(12)G�↵(21+). (4.2.3)

In the following, the self-energy is expanded in terms of the RPA screened inter-

action, i.e., while vertex corrections are considered for the self-energy, they are ne-

glected for the polarization of the system. Inserting the vertex function (4.2.2) into

the self-energy expression (4.2.1) yields

S↵�(12) = iG↵�(12)W(1+2) + i Â
�

Z
d3 d4 G↵�(14)W(1+3)

�S��(42)
�Ueff(3)

, (4.2.4)

the GW self-energy plus an additional self-energy contribution that contains the

functional derivative of the self-energy with respect to the effective potential. The

successive reinsertion of the self-energy on the right-hand side generates self-

energies of ever increasing order in the screened interaction W. The functional

derivative of the self-energy involves the response of the Green function

�G↵�(12)
�Ueff(3)

= �Â
�,�

Z
d4 d5 G↵�(14)

✓
�(45)�(43)��� +

�S��(45)
�Ueff(3)

◆
G��(52), (4.2.5)

as well as a functional derivative of the screened interaction, which is

�W(12)
�Ueff(3)

=
Z

d4 d5 W(14)
�P(45)
�Ueff(3)

W(52), (4.2.6)

where the variation of the polarization function in the random-phase approximation

is
�P(12)
�Ueff(3)

= �i Â
↵,�

✓
�G↵�(12)
�Ueff(3)

G�↵(21+) + G↵�(12)
�G�↵(21+)
�Ueff(3)

◆
. (4.2.7)

The Eqs. (4.2.5) - (4.2.7) together with Eq. (4.2.4) result in the desired expansion of
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Figure 4.1: Feynman diagrams of the expansion of the Hedin self-energy up to the
third order in the screened interaction (wiggly line). The Green function is denoted
by an arrow.

the self-energy. The following discussion of the self-energy contributions focuses on

collinear magnetic systems in which the Green function is diagonal in spin space

G↵�(12) = G↵(12)�↵� with ↵ = {", #}. The expansion of the self-energy up to the

third order in the screened interaction is shown in terms of Feynman diagrams in

Fig. 4.1. It has been discussed by Hedin and Lundqvist [71, 74] already. The ex-

pansion constitutes of two distinct types of diagrams: exchange diagrams and dia-

grams called direct terms that contain a loop formed by Green functions. The GW

self-energy is an exchange self-energy in which the exchange process is mediated

by the screened interaction. It occurs as the first-order self-energy S(1)
↵ expanded

in the screened interaction. The next higher-order contribution is the second-order

screened exchange (SOSEX) self-energy

S(2)
↵ (12) =

Z
d3 d4 G↵(14)W(13)G↵(43)W(42)G↵(32). (4.2.8)

The SOSEX self-energy is an exchange self-energy in which the effective interaction

takes the form of a particle-particle (pp) T matrix

T(2),pp
↵↵ (13, 42) = �W(13)Kpp

↵↵(13, 42)W(42) (4.2.9)

with the non-interacting particle-particle propagation

Kpp
↵↵0(12, 34) = iG↵(13)G↵0(24). (4.2.10)

In collinear magnetic systems, exchange diagrams do not contain spin-flip processes.

The reason is that exchange is a quantum mechanical effect that stems from the in-

distinguishability of the electrons. In a collinear magnetic system, two electrons are
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indistinguishable only if they have the same spin. Consequently, an exchange contri-

bution to the self-energy is only non-zero in collinear magnetic systems if the spin is

equal. This can also be seen from the Feynman diagrams in Fig. 4.1. In an exchange

diagram, all Green functions contained in it are directly connected to each other. In

collinear magnetic systems, these Green functions are diagonal in spin-space so that

the spin of the connected Green functions must be the same for a non-vanishing con-

tribution. Therefore, the SOSEX self-energy

S(2)
↵ (12) = i

Z
d3 d4 G↵(43)T(2),pp

↵↵ (13, 42) (4.2.11)

as well as all the exchange self-energies of the third order, see lower row of Fig. 4.1,

do not contain spin-flip processes. We search, however, for a self-energy beyond the

GW approximation that explicitly takes into account spin-flip processes. Besides the

exchange self-energies, two non-exchange self-energies, so-called direct terms, occur

in the expansion of the self-energy. These direct terms are shown as the third and the

fourth diagram in the upper row of Fig. 4.1. In contrast to an exchange self-energy,

a direct term contains spin-flip processes as the Green functions which are solely

connected by the screened interaction can have different spins. The direct terms can

be formulated in the T-matrix approach similar to that of the SOSEX. The effective

interaction in the direct diagrams involves a particle-hole (ph) propagator

Kph
↵↵0(12, 34) = iG↵(13)G↵0(42) (4.2.12)

in addition to the particle-particle propagator (4.2.10). The effective interaction cor-

responds to a particle-particle and particle-hole scattering that reads

T(3),pp/ph
↵↵0 (13, 24) = �

Z
d5 d6 W(13)Kpp/ph

↵↵0 (13, 56)W(56)Kpp/ph
↵↵0 (56, 24)W(24)

(4.2.13)

formulated in terms of a particle-particle and a particle-hole T matrix, respectively.

The corresponding self-energies

S(3)
↵ (12) = �i Â

↵0

Z
d3 d4

h
T(3),ph
↵↵0 (13, 24)G↵0(34) + T(3),pp

↵↵0 (13, 24)G↵0(43)
i

(4.2.14)

contain contributions from non-spin-flip (↵ = ↵0) and spin-flip (↵ = �↵0) processes.

In summary, the expansion of the Hedin self-energy in terms of the RPA screened in-

teraction yields self-energies of two different types. The exchange diagrams like the
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GW self-energy, the SOSEX self-energy, and the higher-order exchange self-energies

do not account for spin-flip processes in collinear magnetic systems. Therefore, these

diagrams are irrelevant to describe the effect of spin-flip scattering on the electronic

spectrum. In contrast, direct terms can take spin-flip processes into account. The

expansion of the self-energy leads to a vertex correction in the flavor of the GW+T

approach that does not require a double-counting correction. The particle-particle T

matrix has been used for the investigation of the 6 eV satellite in nickel [203]. The

non-spin-flip contribution of the particle-hole channel accounts for excitonic effects,

which are important for the optical properties of semiconductors [240, 246, 258]. It is

the spin-flip part of the particle-hole channel with opposite spins↵ = �↵0

S(3)
↵ (12) = �i

Z
d3 d4 T(3)

↵↵0(13, 24)G↵0(34) (4.2.15)

that is expected to be particularly important for ferromagnetic materials. The third-

order GT self-energy (4.2.15) accounts for the coupling of electrons to spin-flip exci-

tations. Collective spin-wave excitations, however, are not fully accounted for in the

T matrix of third order. They arise from the correlated motion of electron-hole pairs

with opposite spins. The diagram of the third-order T matrix has the characteristic

form of a ladder diagram where the rungs of the ladder correspond to the interaction

and its rails correspond to the electron and hole propagation. The ladder approxi-

mation sums up the ladder diagrams to infinite order in the interaction. Thereby, it

extends the third-order T matrix to a multiple-scattering T matrix, which accounts

for the single-particle excitations and the collective spin-wave excitations. The lad-

der approximation has been employed in the magnetic response function, in which

the collective spin-wave excitations show up as sharp peaks in its spectral function,

see Section 3.2. In the ladder approximation, the multiple-scattering T matrix is the

solution of the Bethe-Salpeter equation

T↵↵0(12, 34) = T(3)
↵↵0(12, 34) +

Z
d5 d6 W(12)K↵↵0(12, 56)T↵↵0(56, 34). (4.2.16)

The T matrix is an effective interaction driven by spin-flip excitations and, in partic-

ular, the collective spin-wave excitations, also known as magnons, play an important

role. We refer to the multiple-scattering electron-hole T matrix with opposite spins

as the magnon-induced effective interaction. We employ this effective interaction in

the self-energy expression (4.2.15) instead of the third-order T matrix. The resulting
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Figure 4.2: Feynman diagram of the electron-magnon self-energy in the ladder ap-
proximation. Notation as in Fig. 4.1.

self-energy, whose diagram is shown in Fig. 4.2,

S↵(13) = �i
Z

d2 d4 T↵↵0(12, 34)G↵0(24) (4.2.17)

is referred to as the GT approximation in the present context. By using the term GT

self-energy we implicitly assume opposite spins ↵ = �↵0. The GT approximation

does not require a double-counting correction if it is combined with the GW approx-

imation. The GT approximation generally takes into account the coupling of elec-

trons to spin-flip excitations. In particular, it accounts for the coupling of electrons to

magnons, which is expected to be of special importance in ferromagnetic materials.

Therefore, the GT self-energy is also referred to as the electron-magnon self-energy.

The GT approximation describes the electron-magnon scattering in terms of

magnon exchange processes, which is formally similar to the electron-phonon self-

energy where phonon exchange processes are described. In case of the electron-

phonon interaction it was shown by Migdal [259] that phonon exchange processes

in first order, i.e., without vertex corrections, are sufficient to describe the electron-

phonon scattering despite the strength of the electron-phonon interaction. The

Migdal theorem states that vertex corrections to the electron-phonon self-energy are

proportional to the inverse square root of the mass of the nuclei in atomic units and

are therefore negligible. The question arises what is the importance of vertex cor-

rections for the electron-magnon self-energy. The vertex corrections to the electron-

magnon self-energy in the GT approximation leads to similar diagrams as in Fig. 4.1

with the screened interaction W replaced by the magnon propagator T. Analyzing

these vertex corrections up to the third order in the magnon propagator one notices

that the second-order exchange diagram, shown as the second diagram in the top

row of that figure, and all third-order diagrams except one vanish without spin-orbit

coupling. The only non-vanishing vertex correction yields an exchange self-energy

contribution of third order in the magnon propagator T, it has the shape of the last
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self-energy diagram in the lower row of Fig. 4.1 with W replaced by T. This self-

energy diagram describes a propagating particle that undergoes several spin flips

of which at least one is a minority spin flip. In the case of strong ferromagnetism

where only majority spin flips are possible the corresponding contribution would

vanish. While in general also minority spin flips are possible in ferromagnetic ma-

terials, these processes are much more unlikely than majority spin flips. Therefore,

such a self-energy contribution is expected to be considerably less important than the

GT self-energy (4.2.17) and is neglected in the following.

Another important question is how the GT self-energy relates to commonly em-

ployed realizations of the dynamical mean-field theory (DMFT). In the framework of

the DMFT [209,214,215] the interacting many-body problem is mapped onto a (single

site) quantum impurity model, which is embedded in a bath system and is subject

to a self-consistency condition. The quantum impurity model lies at the heart of the

DMFT and various impurity solvers have been implemented. For the description of

the transition metals within the DMFT [62–66] the spin-polarized T-matrix fluctu-

ation exchange (SPTF) approximation proposed by Katsnelson et al. [65, 260, 261] is

often used. The fluctuation exchange (FLEX) approximation is a perturbative ex-

pansion of the self-energy in powers of the interaction U that resums ladder di-

agrams treating particle-particle and particle-hole excitations on the same footing

[262–264]. Thereby, the FLEX self-energy accounts for the interaction of (longitu-

dinal and transversal) spin, charge, and particle-particle fluctuations, i.e., the FLEX

approximation contains the Hartree diagram, the GW approximation, the SOSEX

self-energy, and higher-order diagrams in terms of the T-matrix approach. The SPTF

approximation [65, 260, 261] refines the symmetric treatment of the particle-particle

and particle-hole channel within the FLEX approximation. That is, the SPTF approx-

imation makes use of the fact that the main correlation effects in magnetism stem

from the electron-hole channel while the particle-particle channel is essential for the

renormalization of the effective interactions. To this end, the bare interaction U that

mediates the correlation among the electron-hole pairs is replaced by the static limit

of the spin-polarized particle-particle T matrix. In this work, we include a subset of

the scattering channels accounted for in the SPTF. In particular, the electron-magnon

scattering in the GT approximation is combined with the static limit of the GW ap-

proximation. On the other hand the self-energy calculated within single site DMFT

is purely local and extensions to cluster methods yield at most a limited access to

the momentum dependence of the self-energy in practice. Thus, the DMFT approach
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does not permit to study phenomena which stem from nonlocal self-energy effects.

In the many-body perturbation theory, however, the full k dependence of the self-

energy is taken into account and, therefore, nonlocal effects are treated naturally. In

particular, the GT self-energy allows to investigate phenomena which might arise

from the spatial extension of the spin-wave excitations. Indeed, we find features in

the renormalized quasiparticle band dispersions for the elementary ferromagnets,

which have not been reported by DMFT calculations and which can be attributed to

the nonlocal treatment of the self-energy. The discussion proceeds with a presenta-

tion of the implementation of the GT approximation.

4.3 Implementation

The GT self-energy approximation contains the multiple-scattering spin-flip T ma-

trix. The T matrix is a four-point function as it depends on four space and time

variables just as the four-point magnetic response function discussed in Section 3.3.

For a practical implementation, the GT self-energy (4.2.17) is too complex. To re-

duce its complexity, we apply the same approximations that have been used already

for the implementation of the magnetic response function. First, the implementation

makes use of the fact that the Hamiltonian is not explicitly time dependent. As a

consequence, the number of independent time variables reduces to three. Since the

spin-wave excitations are low-energy excitations, it is reasonable to approximate the

screened interaction for all frequencies by its static limit. This implies that the inter-

action is instantaneous in time, i.e., W(12) = W(r1, r2)�(t1 � t2). As a result of the

static approximation, the self-energy (4.2.17) depends on a single time or frequency

argument

S↵(r1, r3;!) =
�i
2⇡

Z 1

�1
d!0

Z
dr2 dr4 G↵0(r2, r4;!�!0) T↵↵0(r1, r2; r3, r4;!0).

(4.3.1)

For the evaluation of the frequency convolution two different methods have been im-

plemented. One of the methods makes use of the Green function’s Lehman represen-

tation, which allows to perform a contour integration. As an alternative approach,

the self-energy calculated as a function of an imaginary frequency argument is an-

alytically continued to real frequencies. Besides the frequency integration, which is

discussed in Section 4.3.2, the dependence of the T matrix on four space variables is

a major challenge in terms of the numerical demand. A formulation in a Wannier
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basis [46, 47] allows an efficient truncation of the T matrix in real space.

4.3.1 Formulation in a Wannier Basis

A formulation in a Wannier basis allows an efficient treatment of the real space inte-

grations, necessary for the evaluation of the self-energy. The self-energy is calculated

starting from a mean-field solution, e.g., a density-functional theory calculation may

serve as starting point. Under the assumption that the single-particle wave functions

are a good approximation to the quasiparticle wave functions, the self-energy matrix

represented in the single-particle states is practically diagonal. The self-energy (4.3.1)

represented with respect to a single-particle state '↵qn(r) with Bloch-momentum q,

band n, and spin↵ reads

S↵qn(!) =
�i
2⇡

Z 1

�1
d!0

Z
dr1 dr2 dr3 dr4

⇥'↵⇤qn(r1)G↵0(r2, r4;!�!0) T↵↵0(r1, r2; r3, r4;!0)'↵qn(r3). (4.3.2)

The evaluation of the self-energy is a challenging task, in particular, the T matrix,

which explicitly depends on four space arguments, makes the real space integrations

costly. The T matrix is treated in the ladder approximation where the interaction be-

tween the electron-hole pairs is the screened interaction W within the random-phase

approximation. In metallic systems, which are of central interest in the present work,

screening is very efficient and consequently the interaction is short-range. The short-

rangeness of W allows to employ an on-site approximation for the interaction. The

on-site approximation means that electron-hole pairs located on the same atomic site

interact with each other, while off-site interactions are neglected, cf. Fig. 3.2. The

short-rangeness of W motivates to formulate the theory in a basis of maximally lo-

calized Wannier functions [46, 47]. Wannier functions are given by the Fourier trans-

forms of the single-particle wave functions, cf. Eq. (3.3.3). The T matrix is truncated

in real space by employing a set of Wannier orbitals, denoted by ni, for its represen-

tation

T↵↵0(r1, r2; r3, r4;!) = Â
R,R0

Â
n1,n2,n3,n4

w↵Rn1
(r1)w↵

0⇤
Rn2

(r2)

⇥ T↵↵
0

Rn1Rn2,R0n3R0n4
(!)w↵⇤R0n3

(r3)w↵
0

R0n4
(r4). (4.3.3)
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The set of Wannier functions has to be chosen such that the physical properties are

represented appropriately. In particular, the T matrix describes the collective spin-

wave excitations. In the elementary ferromagnets these excitations arise mainly from

the states close to the Fermi level. Therefore, it is that energy subspace which is most

important. The states close to the Fermi level have predominantly d character and

a minimal Wannier basis set should contain at least the five d orbitals. Combin-

ing the T matrix represented in such a way with the Lehman representation of the

non-interacting Green function (3.3.4) reduces the four real-space integrations in the

self-energy expression (4.3.2) to a summation over the lattice sites R and R0 of the

supercell as well as a sum of the set of Wannier orbitals ni

S↵qn(!) =
�i

2⇡N

Z 1

�1
d!0 Â

k

all

Â
m

Â
R,R0

Â
n1,n2,n3,n4

e�i(q�k)(R�R0)

⇥ T↵↵0
Rn1Rn2,R0n3R0n4

(!0)U↵
qn,n1

U↵0⇤
km,n2

U↵⇤
qn,n3

U↵0
km,n4

!�!0 �✏↵0
km + i⌘sgn(✏↵0

km �✏F)
. (4.3.4)

The T matrix depends only on the difference of the lattice site position DR = R �
R0. Therefore, the summations over all lattice sites R and R0 correspond to a lattice

Fourier transformation from the space of lattice sites to the space of lattice momenta

S↵qn(!) =
�i
2⇡

Z 1

�1
d!0 Â

k0

all

Â
m

Â
n1,n2,n3,n4

⇥
T↵↵0

n1n2,n3n4
(k0,!0)U↵

qn,n1
U↵0⇤

q�k0m,n2
U↵⇤

qn,n3
U↵0

q�k0m,n4

!�!0 �✏↵0
q�k0m + i⌘sgn(✏↵0

q�k0m �✏F)
, (4.3.5)

where the summation over the Brillouin zone has been shifted by k = q � k0 for

convenience. The summation over states m is practically restricted to the number of

single-particle wave functions which are used within the construction of the Wan-

nier functions. The self-energy (4.3.5) is amenable for a numerical treatment. The

next section addresses the convolution of the Green function and the T matrix in the

frequency domain.

4.3.2 Frequency Integration

The calculation of the GT self-energy (4.3.5) requires the evaluation of the convolu-

tion of the Green function G and the T matrix in the frequency domain. To this end,

two methods, the contour-integration method and the analytic-continuation method,

have been implemented.
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Figure 4.3: The contour integration path that is used for the evaluation of the convo-
lution of the electronic Green function G and the T matrix in the frequency domain.
Crosses depict the poles of the Green function and the dash-dotted line indicates the
pole distribution of the T matrix.

Contour-Integration Method

The contour-integration method has been introduced by Godby et al. [265] as an ef-

ficient way to calculate self-energy operators. Since then the contour integration has

been routinely applied to the calculation of the GW self-energy. We have adapted

the contour-integration method to evaluate the convolution of the Green function

and the T matrix in the frequency domain. The integrand, consisting of G and T,

has a lot of structure along the real frequency axis. For this reason, to obtain accu-

rate results an explicit evaluation of the integral along the real frequency axis would

require an excessive computational effort. The contour-integration method bypasses

this problem. It makes use of the fact that the distribution of the integrand’s poles

are known, see Fig. 4.3. The poles of the Green function are known exactly, these

are located at the single-particle energies shifted with respect to the frequency argu-

ment of the self-energy. The poles of the T matrix are not known exactly, but their

distribution is known. The poles lie in the upper half plane for negative real fre-

quencies and in the lower half plane for positive real frequencies. These pieces of

information are sufficient to replace the integration along the real frequency axis by

the contour integration shown in Fig. 4.3. It relates the integration along the real fre-

quency axis to an integration along the imaginary frequency axis plus the sum over

the poles of the Green function falling into the contour path. According to Cauchy’s

integral formula, the sum of the Green function’s poles demands the evaluation of
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the T matrix at those poles. One alternative could be to evaluate the T matrix as a

function of real frequencies and obtain the T matrix at the Green function’s pole by

an interpolation scheme. This approach, however, demands the T matrix to be cal-

culated on a dense mesh of real frequencies. Therefore, an alternative approach is

employed which makes use of the imaginary frequency axis. There, the T matrix is

a smooth function which permits a Padé approximation for the T matrix calculated

for an exponential imaginary frequency mesh of the form

!i =
xi � x
xn � x

!max, (4.3.6)

where x determines the exponentially increasing distance between the n mesh points

with a maximal frequency!max. The Padé approximation is a representation of the T

matrix as a sum of effective poles. The Padé approximation, in turn, allows to obtain

the value of the T matrix at the real-valued poles of the Green function by means

of an analytic continuation. In addition, the Padé approximation allows to perform

the integration along the imaginary frequency axis analytically. The technical details

of the Padé approximation and its use within the contour-integration method are

described in the Appendix A.

Analytic-Continuation Method

The method of analytic continuation [266, 267] allows the evaluation of self-energy

operators in the frequency domain, it is an alternative to the contour-integration

method. The analytic continuation avoids the integration along the real-frequency

axis entirely. To this end, the T matrix and the Green function are evaluated along

the imaginary frequency axis. There, the integrand is a smooth function which allows

an efficient calculation of the self-energy. The self-energy as a function of imaginary

frequencies z = i! is connected to the time domain by means of a Laplace transfor-

mation

S↵(r1, r3; z) = �i
Z 1

0
d⌧

Z
dr2 dr4 e�z⌧ G↵0(r2, r4; ⌧) T↵↵0(r1, r2; r3, r4; ⌧). (4.3.7)

The inverse Laplace transformation

T↵↵0(r1, r2; r3, r4; ⌧) =
1

2⇡ i

Z ⌘+i1

⌘�i1
dz0 ez0⌧T↵↵0(r1, r2; r3, r4; z0) (4.3.8)
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with a positive infinitesimal ⌘ ! 0+ yields the self-energy as a function of complex

frequencies

S↵(r1, r3; z) =
�1
2⇡

Z ⌘+i1

⌘�i1
dz0

Z
dr2 dr4 G↵0(r2, r4; z � z0) T↵↵0(r1, r2; r3, r4; z0).

(4.3.9)

In the Wannier-basis formulation the diagonal element of the self-energy as a func-

tion of imaginary frequencies is

S↵qn(z) =
�1
2⇡

Z ⌘+i1

⌘�i1
dz0 Â

k0

all

Â
m

Â
n1,n2,n3,n4

⇥
T↵↵0

n1n2,n3n4
(k0, z0)U↵

qn,n1
U↵0⇤

q�k0m,n2
U↵⇤

qn,n3
U↵0

q�k0m,n4

z � z0 �✏↵0
q�k0m

. (4.3.10)

This expression corresponds to the self energy (4.3.5) analytically continued to the

imaginary frequency axis. The poles of the integrand, the Green function, and the

T matrix are located close to the real axis. As a consequence, the integrand has a

lot of structure as a function of real frequencies. In contrast, along the imaginary

frequency axis the integrand is a smooth function so that the integration along that

axis can be done efficiently using a coarse frequency mesh. For the integration, a

Padé approximation of the T matrix is employed that, in turn, allows to perform the

integration analytically. The corresponding formulas are shown in the Appendix A.

The self-energy as a function of imaginary frequencies has no significance on its own.

The physically meaningful self-energy is a function of real frequencies. It is obtained

by an analytic continuation of the self-energy (4.3.10). The procedure of the analytic

continuation is depicted in Fig. 4.4. In practice, the analytic continuation is done by

means of a Padé approximation of the self-energy. That is, the self-energy as a func-

tion of imaginary frequencies is represented by a sum of effective poles. This allows

to perform the analytic continuation by replacing i! ! !. The process of analytic

continuation must avoid crossing the poles of the self-energy operator. Therefore,

the analytic continuation is performed such that the self-energy of positive real fre-

quencies is obtained from the self-energy defined on the positive imaginary axis and

vice-versa for the negative axis.

The analytic-continuation method has been implemented as an alternative to the

contour-integration method to evaluate the convolution of the Green function and

the T matrix in the frequency domain that appears in the self-energy operator (4.3.1).

The computational details and a comparison of both methods is discussed in Sec-
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Figure 4.4: The analytic continuation of the self-energy given as a function of imag-
inary frequencies (red crosses) is performed by means of a Padé approximation. The
effective poles of the Padé approximation are depicted as dashed line. The analytic
continuation is performed such that no pole of the actual self-energy represented as
dash-dotted line is crossed.

tion 4.6. Prior to that, the next section reviews the quasiparticle concept and Sec-

tion 4.5 gives a formal discussion of the GT self-energy.

4.4 Quasiparticle Concept

4.4.1 Quasiparticle Equation

The Green function formulation of the many-body problem [82, 83] allows to calcu-

late the quasiparticle energies [268,269]. For this, one needs to solve the quasiparticle

equation

h0(r) ↵qn(r) +
Z

dr0 S↵(r, r0; E↵qn) 
↵
qn(r

0) = E↵qn 
↵
qn(r), (4.4.1)

with the Hartree Hamiltonian h0(r) defined in Eq. (2.1.23), the quasiparticle wave-

function  ↵qn(r), the quasiparticle energy E↵qn, and the exchange-correlation self-

energy S↵(r, r0;!), which acts as a nonlocal and energy-dependent potential. A con-

venient starting point is the Kohn-Sham system, which is the solution of the Kohn-

Sham equation

[h0(r) + v↵xc(r)] '
↵
qn(r) = ✏

↵
qn'

↵
qn(r) (4.4.2)

of the density-functional theory with a (semi-) local-density approximation to the

exchange-correlation potential v↵xc(r), the Kohn-Sham eigenfunction'↵qn(r), and the

Kohn-Sham energy ✏↵qn, cf. Section 2.2.1. The exchange-correlation potential can be

81



4. Electron-Magnon Scattering

seen as a local and energy-independent approximation to the exchange-correlation

self-energy that gives the correct ground-state density of the interacting system. Pro-

vided that the correction of the self-energy approximation is small compared to the

chosen Kohn-Sham starting point, the Kohn-Sham eigenfunctions and Kohn-Sham

eigenvalues will be sufficiently close to the quasiparticle solution to apply first-order

perturbation theory to solve the quasiparticle equation

[h0(r) + v↵xc(r)] '
↵
qn(r)

+
Z

dr0
h
S↵(r, r0; E↵qn)� v↵xc(r

0)�(r � r0)
i
'↵qn(r

0) = E↵qn'
↵
qn(r). (4.4.3)

Usually, the off-site elements (n 6= n0) of the self-energy matrix are small compared

to the diagonal elements. Therefore, the quasiparticle energies are often calculated

by considering only the diagonal elements of the self-energy

E↵qn = ✏↵qn +
Z

dr dr0'↵⇤qn(r)
h
S↵(r, r0; E↵qn)� v↵xc(r

0)�(r � r0)
i
'↵qn(r

0). (4.4.4)

The linearized solution of the quasiparticle equation is found by expanding the self-

energy up to the first order in the quasiparticle energy

E↵qn = ✏↵qn + Z↵qn

Z
dr dr0'↵⇤qn(r)

h
S↵(r, r0;✏↵qn)� v↵xc(r

0)�(r � r0)
i
'↵qn(r

0), (4.4.5)

where the renormalization factor is given by

Z↵qn =

 
1 �

Z
dr dr0'↵⇤qn(r)

dS↵(r, r0;✏↵qn)

d!
'↵qn(r

0)

!�1

. (4.4.6)

The quasiparticle energies obtained in such a way can be compared with the excita-

tion spectrum measured in photoemission experiments.

4.4.2 Spectral Function

A photoemission experiment uses photons to excite electrons out of the crystal. Ana-

lyzing the angle resolved energy and momentum distribution of the excited electrons

allows to deduce information about the hole left behind in the probe. Thereby, a pho-

toemission experiment yields information about the occupied states in the solid [270].

In contrast, an inverse photoemission experiment uses electrons to probe the unoc-

cupied states of the solid by analyzing the outcoming photons [271–273]. The pho-
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toemission intensity measured experimentally is intimately connected to the spectral

function of the electronic Green function. Within many-body perturbation theory the

Green function is a solution of the Dyson equation

G↵(r, r0;!)�1 = G0,↵(r, r0;!)�1 � S↵(r, r0;!), (4.4.7)

with the non-interacting Green function G0,↵ that solves the Hartree Hamiltonian

h0(r) with eigenenergies ✏↵0,qn. The Green function contains the true excitation ener-

gies and its spectral function

A↵(q,!) =
1
⇡

�����Im
all

Â
n

Z
dr dr0'↵⇤qn(r)G↵(r, r0;!)'↵qn(r

0)

����� (4.4.8)

is the distribution of the quasiparticle poles at these excitation energies ! = E↵qn.

Employing the linearized solution of the quasiparticle equation (4.4.5), the spectral

function of a single quasiparticle

A↵qn(!) =
1
⇡

���ImZ↵qn Re
h
!�

⇣
✏↵0,qn + S↵qn(E↵qn)

⌘i���+
���ReZ↵qn ImS↵qn(E↵qn)

���
���!�

⇣
✏↵0,qn + ReS↵qn(E↵qn)

⌘���
2
+
���ImS↵qn(E↵qn)

���
2 , (4.4.9)

takes the form of an asymmetric Breit-Wigner distribution. Usually, the renormal-

ization of the single-particle state is small and, in the limiting case ImZ↵qn ! 0,

the spectral function (4.4.9) reduces to a symmetric Lorentzian-shaped quasiparti-

cle peak located at the quasiparticle energy E↵qn. The width of such a quasiparticle

peak is associated with the inverse lifetime of that state and originates from the fi-

nite imaginary part of the self-energy ImS↵qn(E↵qn). The lifetime arises from the fact

that the quasiparticle state is not a discrete eigenstate of the interacting Hamiltonian,

corresponding to a single-particle state dressed with a manifold of excited states. If

the lifetime is long, i.e., the imaginary part of the quasiparticle solution is small, the

quasiparticle is a coherent state of the many-body system. In contrast, if the quasi-

particle lifetime is short, the spectral function exhibits a broad feature. This means

that the quasiparticle is an incoherent state of the many-body system [74].

4.4.3 Effective Mass

The interaction between the electrons within a solid leads to the formation of quasi-

particles, provided that the quasiparticle picture is applicable. Usually, the quasipar-

ticle mass differs from the mass me of a free electron. In the vicinity of the Fermi
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level many materials exhibit a quadratic band dispersion just as the dispersion of

free electrons. This allows to define an effective mass m⇤ of the quasiparticles, which

is related to the inverse curvature of the dispersion relation. There are two exper-

imental techniques routinely employed to determine the effective mass. On the

one hand, angle-resolved photoemission spectroscopy (ARPES) experiments mea-

sure the band structure directly. For example, recent ARPES measurements indicate a

strong renormalization of the effective masses for the three elementary ferromagnets

bcc Fe [58, 62, 206], hcp Co [61], and for fcc Ni [59, 274–277]. On the other hand, the

de Haas-van Alphen (dHvA) experiment, which allows to image the Fermi surface,

has been used to study mass renormalization [278–280]. The mass renormalization

is, usually, calculated by comparing the measured effective mass with a theoreti-

cally predicted mass m0, e.g., from a band dispersion obtained by density-functional

theory. The effective masses of the (quasi-)particles is inversely proportional to the

curvature of the band dispersion. An estimate of the mass renormalization is given

by the ratio of the single particle’s and the quasiparticle’s velocity, i.e.,

m⇤
m0

=
rq✏↵qn

rq E↵qn
. (4.4.10)

The quasiparticle velocity is derived from the quasiparticle equation (4.4.4)

rq E↵qn = rq✏
↵
qn +rq E↵qn

dS↵qn(!)

d!

�����
!=E↵qn

+rq S↵qn(!)
���
!=E↵qn

, (4.4.11)

so that the mass-renormalization is given by

m⇤
m0

=
rq✏↵qn

Z↵qn

✓
rq✏↵qn +rq S↵qn(!)

���
!=E↵qn

◆ , (4.4.12)

with the renormalization factor Z↵qn defined in Eq. (4.4.6) but evaluated at the quasi-

particle energy instead of at the Kohn-Sham energy. Provided that the dispersion of

the self-energy is negligible, the mass renormalization reduces to the inverse of the

quasiparticle renormalization factor

m⇤
m0

=
1

Z↵qn
. (4.4.13)

An example for such a case is the electron-phonon self-energy. It has been shown

by Migdal [259] that the self-energy is essentially independent of the momentum q.
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Nakajima and Watabe [281,282] figured out that the variation of the electron-phonon

self-energy with respect to the energy is two orders of magnitude larger than its

variation with respect to the momentum.

4.4.4 Satellites

The solution to the quasiparticle equation (4.4.4) usually gives rise to a well defined

quasiparticle peak in the spectral function. This quasiparticle represents an electron

or a hole dressed with virtual many-body excitations. However, there might occur an

additional quasiparticle solution giving rise to a second peak in the spectral function.

This is because the quasiparticle equation (4.4.4) is nonlinear. The second quasipar-

ticle solution represents a bound state of a real many-body excitation dressed with

electrons or holes. In case of the GW approximation such an additional quasiparticle

state corresponds to a bound state of plasmons with an electron or a hole. This new

state is called a plasmaron and was predicted by Hedin and Lundqvist [227–230].

The additional quasiparticle peak is referred to as a satellite peak. Usually, satel-

lites are not well described by GW calculations and the full satellite spectrum is inac-

cessible due to the missing vertex corrections. The cumulant expansion is a way

to partially sum higher-order diagrams. It has been shown to be suitable to de-

scribe an electron-boson coupling in terms of a polaron Hamiltonian [232]. There-

fore, the bound states of plasmons with an electron or a hole, introduced by Hedin

and Lundqvist as plasmarons, are also referred to as electronic polarons [239, 240]

or plasmonic polarons [241, 242]. Nozières and de Dominicis [235] as well as Lan-

greth [236] used the cumulant expansion to study singularities in the x-ray spectra

of metallic core states. Later the method has been applied to conduction electrons

by Bergersen [237], Minnhagen [238], and Hedin [231]. This type of expansion sums

boson type diagrams describing the emission and reabsorption of plasmons. Aryase-

tiawan et al. [232] have shown that the cumulant expansion is able to reproduce

multiple plasmon satellites in Na and Al as seen experimentally. Photoemission ex-

periments also measure multiple satellites in semiconductors, which are reproduced

by the cumulant expansion of the GW approximation [233]. Caruso et al. [241, 242]

have shown that the cumulant expansion is capable of describing plasmonic po-

laron bands, which occur in materials such as silicon and group IV transition-metal

dichalcogenides with well-defined plasmon resonances.

The coupling of electrons to magnons, as described by the GT self-energy, might

also lead to the occurrence of new structures in the single-particle spectrum. These
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satellites are, however, different in their nature compared to the plasmaron state oc-

curring in the GW plus cumulant expansion. For a qualitative description of these

new states, the Brillouin-Wigner perturbation theory is employed. For this, we fol-

low the approach employed by Lundqvist [227] for the description of the plasmaron

state and apply it to the electron-magnon coupling. The electron-magnon coupling

is described by the effective Hamiltonian [283, 284]

Heff = Â
k

Â
↵

✏↵kc†k↵ck↵ +Â
q
!qb†qbq + Â

k,q

⇣
�"#q c†k+q"ck#b†q + �#"q c†k�q#ck"bq

⌘
, (4.4.14)

where c†k↵ , ck↵ and b†q, bq are creation and annihilation operator for electrons with

spin↵ and energy ✏↵k and magnons with excitation energy!q, respectively. The cou-

pling strength between electrons and magnons is taken into account by the coupling

constant �↵↵0
q . Excited states, which are formed out of the ground state |0i by the

creation of electron or hole states, are coupled to magnon excitations. For example a

majority hole state ck"|0i is coupled to a product state of minority holes and magnons

ck�q#b†q|0i. The coupling of the majority hole with the magnons leads to a renormal-

ization of the unperturbed hole state ck"|0i. In particular, the new state vector is a

linear combination of the unperturbed majority hole and a product state consisting

of minority holes and magnons, i.e.

|Y"
ki =

1
N

2

4ck" +Â
q
�"#q

ck�q#b†q
E �✏#k�q +!q

3

5 |0i, (4.4.15)

with a properly chosen normalization constant N . The energy of the perturbed ma-

jority hole obeys an implicit equation

E = ✏"k +Â
q
|�"#q |2 1

E �✏#k�q +!q
, (4.4.16)

which is formally identical to the quasiparticle equation (4.4.4). Usually, its solution

corresponds to a well-defined quasiparticle, which is the hole state that experiences

a weak renormalization due to the perturbation of the hole-magnon excitations. If

the electron-magnon coupling is sufficiently strong, i.e., �"#q is large, there might ap-

pear an additional solution to the implicit equation (4.4.16). As a consequence, the

perturbed state (4.4.15) has two main contributions depending on the energy E and

momentum k. The two contributions are (strongly) mixed many-body states. The

additional peak appears due to the mixing of the majority hole state with a bound
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state of minority holes and magnon excitations. This means the many-body state cor-

responds to a majority hole which is superimposed by a coherent linear combination

of minority holes bound to magnon excitations. A similar mixed many-body state

appears for minority electrons. In this case, the mixed many-body state corresponds

to a superposition of a minority electron with a coherent bound state of majority

electrons and magnon excitations. We refer to the bound states of single-particle and

magnon excitations as magnarons in analogy to the concept of plasmarons. In prin-

ciple, such magnarons could be formed out of majority electrons and the minority

holes, too. The ferromagnetic state, however, inherently leads to strong and weak

spin-flip excitations. The spin-flip scattering of the majority electrons and the mi-

nority holes proceeds via excitations that flip a minority spin, which is an unlikely

process. Therefore, the coupling of these states to the spin-flip excitations are pre-

sumably not strong enough to cause the appearance of a magnaron. The magnaron

state was discussed for itinerant strong ferromagnets by Edwards and Hertz [149]

as magnetic polaron. Irkhin and Katsnelson [285–288] studied a state corresponding

to a superposition of a minority electron with a majority electron plus a magnon in

half-metallic ferromagnets which is called a spin polaron.

4.5 Formal Discussion of the Electron-Magnon Self-Energy

This section provides a formal discussion and a mathematical analysis of the quali-

tative behavior of the electron-magnon self-energy in ferromagnets. The qualitative

behavior of the electron-magnon self-energy has been studied a lot in the literature.

Early studies by Phillips et al. [289] and Davis et al. [283] focused on the renormal-

ization of states close to the Fermi level. They found an effective-mass renormaliza-

tion as large as that due to the electron-phonon interaction. Brandt [290] used the

Hubbard model and derives a conserving T-matrix approach to study a model fer-

romagnet. In case of a completely polarized system he found a large damping of the

single-particle states and a new type of quasiparticle at low excitation energies that

gives rise to a satellite feature in the spectral function. Hertz et al. [148, 149] stud-

ied the electron-magnon coupling and its impact on the quasiparticle states. They

concluded that the electron-magnon interaction leads to a reduction of the exchange

splitting in the vicinity of the Fermi energy. In addition, Hertz et al. discuss the possi-

bility of satellite features, i.e., additional quasiparticle solutions due to the electron-

magnon interaction. They derive an expression for the self-energy that is equivalent
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to the T-matrix approach used by Liebsch [202]. Liebsch showed that the coupling

of the electrons to a magnon-induced interaction leads to a narrowing of the d-band

width and a slight reduction of the exchange splitting in nickel. The following con-

sideration adopts the GT self-energy expression derived by Hertz et al. [148, 149] for

the one-band Hubbard model within the T-matrix approach

S↵(q,!) =
�i
2⇡ Â

k

Z 1

�1
d!0 G↵0(q � k,!�!0) T↵↵0(k,!0), (4.5.1)

which is a special case of the more general expression (4.2.17). The GT approxima-

tion is, mathematically speaking, the convolution of the electronic Green function G

and the multiple-scattering T matrix in the momentum and the frequency domain.

The multiple-scattering T matrix describes the correlated motion of an electron-hole

pair with opposite spins. Thereby, it describes the single-particle Stoner excitations,

the magnon excitations, and combinations thereof on equal footing. In the inter-

acting many-body system these excitations merge and, strictly speaking, the so-

called single-particle excitations cannot be distinguished from the collective ones.

Therefore, we generally refer to these excitations as spin-flip or magnon excitations

in the following. Accordingly, we refer to the multiple-scattering T matrix as the

magnon-induced effective interaction. Besides the magnon-induced interaction the

self-energy depends on the electronic spectrum via the Green function G. The Green

function describes the spin-polarized state of a ferromagnetic system with its major-

ity and minority states. The spin polarization leads to the occurrence of strong and

weak magnon excitations meaning the spectral weight of the strong magnon excita-

tions is larger than that of the weak magnon excitations, see Fig. 4.5. While the strong

magnon excitations involve majority holes and minority electrons, the weak magnon

excitations form out of the majority electrons and minority holes.

The GT self-energy (4.5.1) allows an interpretation in terms of a magnon-induced

scattering process, i.e., the GT self-energy describes the scattering of electrons while

magnon excitations are emitted or absorbed. The corresponding Feynman diagram

is shown in Fig. 4.6. The strong and weak magnon excitations reflect themselves

in the spin-dependent distribution of the poles of the T matrix. With the spectral

representation of the magnon-induced interaction

T↵↵0(k,!) =
Z 1

�1
d!0 t↵↵0(k,!0)

!�!0 + i⌘sgn(!0)
, (4.5.2)

88



4.5. Formal Discussion of the Electron-Magnon Self-Energy

Energy !

Im
T
#"
(k
,!

)

Figure 4.5: Schematic behavior of the spectral function of the T matrix for finite
momenta as a function of real frequencies. The spin polarization of a ferromagnetic
material, shown as insets, leads to the occurence of weak (left) and strong (right)
magnon excitations. A weak magnon excitation involves majority electron and mi-
nority hole states as depicted in the left inset. In contrast, a strong magnon excitation
involves majority hole and minority electron states, see inset on the right.

. . .

↵↵0↵

Figure 4.6: Feynman diagram of the electron-magnon scattering process accounted
for in the GT self-energy, cf. Fig. 4.2. The scattering of the incoming particle with spin
↵ by a magnon excitation leads to a spin-flip of the propagating particle↵ = �↵0. The
magnon excitation is described by the multiple-scattering T matrix as the correlated
motion of an electron-hole pair with opposite spins.
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and the spectral representation of the Green function

G↵(k,!) =
Z 1

�1
d!0 g↵(k,!0)

!�!0 + i⌘sgn!0 , (4.5.3)

where t↵↵0(k,!) and g↵(k,!) is the spectral function of the T matrix and the Green

function, respectively, the self-energy (4.5.1) decomposes into the contribution of the

strong and the weak magnon excitations

S↵(q,!) = Â
k

Z 1

0
d!0 d!00 g↵0(q � k,!0)t↵↵0(k,!00)

!�!0 �!00 + i⌘

+Â
k

Z 0

�1
d!0 d!00 g↵0(q � k,!0)t↵↵0(k,!00)

!�!0 �!00 � i⌘
. (4.5.4)

The strong magnon excitation appears in the spectral function of the T matrix as

a well defined �-like quasiparticle peak, schematically shown in Fig. 4.5. The strong

magnon excitation dominates the spectral function of the T matrix, and consequently

it essentially determines the properties of the GT self-energy. For example, if the

spectral function of the T matrix is approximated to solely contain the strong magnon

excitation its impact on the GT self-energy can be evaluated. To this end, the spectral

function is written as t#"(k,!) = a(k)�(! �!(k)), where !(k) � 0 is the spin-

wave excitation energy disregarding spin-wave lifetime effects, and a(k) accounts

for the fact that the spectral weight of the spin-wave excitations decreases from the

Brillouin zone center to its boundary. Which states are predominantly influenced by

the strong magnon excitations depends on the spin state under consideration. The

contribution of the strong magnon excitations to the minority spin self-energy is

S̃#(q,!) = Â
k

Z 1

0
d!0 g"(q � k,!0)a(k)

!�!0 �!(k) + i⌘
. (4.5.5)

The expression describes the magnon-induced scattering involving the strong

magnon excitations, which proceeds via the unoccupied majority states. As a con-

sequence, the strong magnon excitations predominantly influence the unoccupied

minority states. In contrast, its contribution to the majority spin self-energy is

S̃"(q,!) = Â
k

Z 0

�1
d!0 g#(q � k,!0)a(k)

!�!0 +!(k)� i⌘
, (4.5.6)

i.e., the strong magnon excitations affect the occupied majority states. The processes

involving the strong magnon excitations are schematically shown in Fig. 4.7. The ex-
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Energy

D
O
S

Energy

Figure 4.7: Schematic spin-polarized density of states representing magnon-induced
electron scattering processes in a ferromagnetic material. Left: an additional minor-
ity electron becomes part of a strong magnon while a majority electron-hole pair is
excited. Right: an additional majority hole state becomes part of a strong magnon
while a minority electron-hole pair is excited. The magnon is depicted as the double-
wiggly line representing the multiple scattering of electron-hole pairs with opposite
spins.

istence of strong magnon excitations has two important consequences for the renor-

malization of the electronic spectrum. First, the self-energy yields a spin-asymmetric

renormalization of the quasiparticles, and, second, the self-energy leads to a particle-

hole asymmetric renormalization, i.e., occupied and unoccupied states experience

a different renormalization. While in the majority spin channel the hole states are

mostly affected, in the minority spin channel the electronic states above the Fermi

level experience a renormalization due to the strong magnon excitation. Under the

assumption that the spin-wave excitation energies that are important for the cou-

pling of electrons to magnons is much smaller than the energy scale of the electronic

spectrum, the self-energy becomes practically independent of the momentum. For

example the dispersion of an electronic band spans typically an energy range of the

order of eVs. In contrast, the characteristic energy scale of the spin-wave dispersion is

of the order of meVs. In the case that the spin-wave dispersion can be approximated

by a single excitation energy !0, i.e., the spectral function of the T matrix takes the

form t#"(k,!) = a�(!�!0) with a momentum independent spectral weight a, the

self-energies (4.5.5) and (4.5.6) become independent of the momentum. Based on

similar arguments, the momentum insensitivity of the electron-magnon self-energy

was discussed by Edwards and Hertz for a strong ferromagnet within the Hubbard

model [149]. We will later see that the GT self-energy is close to this limiting case for

the elementary ferromagnets iron, cobalt, and nickel.
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4.6 Computational Details

The GT approximation for the electron-magnon self-energy is implemented in the

SPEX code [72], which utilizes the full-potential linearized augmented-plane-wave

(FLAPW) basis set. The non-interacting Green function that serves as starting point

for the self-energy calculation is provided by the FLEUR code [92], which is a FLAPW

implementation of the density-functional theory [18, 19]. The implementation of the

GT self-energy makes use of the T matrix, which is formulated in a Wannier basis.

We employ a set of nine maximally localized Wannier functions [46,47] with s, p, and

d orbital character. These Wannier functions are constructed from the 18 energetically

lowest mean-field single-particle states'↵km(r).

The calculation of the GT self-energy requires the calculation of several other

properties in advance. First, a self-consistent-field calculation of the electronic

ground state within density-functional theory is needed. The exchange-correlation

potential is chosen in the local-spin-density approximation (LSDA) using the param-

eterization of Perdew and Zunger [90]. The results for the three elementary ferro-

magnets iron, cobalt, and nickel are obtained with the lattice constants 2.87 Å, 3.54 Å,

and 3.53 Å, respectively. All calculations employ a 14 ⇥ 14 ⇥ 14 k-point grid. For

the Brillouin zone (BZ) integration we use the tetrahedron method [157]. The static

screened interaction, which mediates the correlation among the electron-hole pairs of

opposite spins, is projected onto a Wannier product basis after it is calculated within

the mixed product basis [72, 108, 166]. The electron-hole pair propagator K = iGG is

evaluated directly in the Wannier product basis by utilizing its Lehman representa-

tion, see Section 3.3.1. The calculation of the screened interaction W and the electron-

hole pair propagator K are the most time-consuming steps. Therefore, W and K are

stored on the disk, once they are calculated, to accelerate subsequent calculations.

In order to fulfill the Goldstone-mode condition the exchange splitting of the LSDA

result is corrected [51]. For iron, cobalt, and nickel the exchange splitting is adjusted

by 0.10 eV, 0.39 eV, and 0.21 eV respectively. The corrected LSDA solution serves

as starting point for the GT self-energy calculation as an alternative to the COHSEX

starting point. The adjustment of the exchange splitting mimics the effect of the self-

consistently renormalized Green function with respect to the COHSEX self-energy,

see Section 3.5.2. We consider the starting-point dependence of the GT self-energy

in Section 4.6.2. The next section summarizes the computational details of the fre-

quency convolution of G and T.
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4.6.1 Frequency Integration

The evaluation of the GT self-energy (4.3.1) requires the calculation of the convolu-

tion of the Green function and the T matrix in the frequency domain. We have imple-

mented two methods for the frequency integration, the contour-integration method

and the analytic-continuation method, for details see Section 4.3.2.

Contour-Integration Method

The contour-integration method enables to perform the frequency integration accu-

rately. It is performed by evaluating the self-energy on an equidistant frequency

mesh around the Fermi level. For example, the self-energy is evaluated within an in-

terval from �7 eV to 7 eV around the Fermi level with a frequency spacing of 25 meV,

which corresponds to 560 frequencies. To evaluate the self-energy, the contour inte-

gration is carried out for each of these frequencies. While the contour integration

is the most precise method to evaluate self-energy operators, it is also computa-

tionally the most demanding. Technically, the integration is done by using a Padé

approximation for the T matrix. To this end, the T matrix is evaluated as a func-

tion of imaginary frequencies. We use an exponential mesh of the form (4.3.6), with

n = 30 mesh points, !max = 0.5 htr maximum energy, and an exponential factor

of x = 1.02. The Padé approximant represents the T matrix as a sum of effective

poles. With the given poles, the contour integration is performed analytically, the

corresponding formulas are shown in the Appendix A. Results of the GT self-energy

calculation obtained with the contour-integration method for the cases Fe, Co, and

Ni are shown in Fig. 4.8. Clearly, the results exhibit a very spiky form of the self-

energy in all three cases. The spikes result from the difficulty to properly converge

the BZ sampling of the �-like quasiparticle peaks present in the T matrix. These �-like

quasiparticle peaks are associated with the strong magnon excitations. Accordingly,

the self-energy is especially spiky where the strong magnons affect the self-energy,

i.e., for the majority states below the Fermi level and for the minority states above

the Fermi level, cf. the formal discussion of the electron-magnon interaction in Sec-

tion 4.5. In principle, the spikes in the self-energy can be converged by increasing the

number of k points until the results are smooth. However, the numerical effort of a

GT self-energy calculation does not allow to increase the k-point set further at the

moment. As a consequence, the k-point convergence issue currently hinders to solve

the quasiparticle equation accurately with the self-energy obtained by means of the
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Figure 4.8: The real part of the self-energy evaluated using the contour-integration
method. The self-energy for a majority (minority) spin state is shown in the upper
(lower) row for the three cases Fe, Co, and Ni (from left to right). The self-energy
is evaluated for the single-particle state ✏"G,5 = (�0.89,�1.09,�0.99) eV and ✏#G,4 =
(�0.49,�1.14,�0.66) eV for iron, cobalt, and nickel, respectively. The Fermi level is
set to zero.

contour-integration method.

Analytic-Continuation Method

The analytic continuation relies entirely on the calculation along the imaginary fre-

quency axis, i.e., the self-energy is evaluated as a function of imaginary frequen-

cies. An analytic continuation at the end of the calculation yields the self-energy as

a function of real frequencies. The integration along the imaginary frequency axis

is performed by using a Padé approximant to the T matrix as done in the contour-

integration method. The method of analytic continuation is computationally less de-

manding compared to the contour-integration method. In contrast to the contour in-

tegration, the analytic-continuation method requires the evaluation of the self-energy

for only n = 20 . . . 30 imaginary frequencies. We employ an exponential frequency

mesh of the form (4.3.6). The analytic continuation is performed by using a Padé

approximant to the self-energy. Results for the elementary ferromagnets are shown

in Fig. 4.9. Clearly, these results do not show any spiky behavior as in the case of

the contour-integration method. The results obtained from the analytic-continuation

method appear as a smooth self-energy following the same overall trend as obtained

by means of the contour-integration method, cf. Fig. 4.8.
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Figure 4.9: The real part of the self-energy evaluated using the analytic-continuation
method. The self-energy for a majority (minority) spin state is shown in the upper
(lower) row for the three cases Fe, Co, and Ni (from left to right). The blue dashed,
red solid, and black dotted curves represent the result using n = 20, n = 24, and
n = 28 mesh points on the imaginary frequency axis respectively. The self-energy is
evaluated for the same states as in Fig. 4.8. The Fermi level is set to zero.

The choice of a proper imaginary frequency mesh, which is used for the analytic-

continuation method, is a delicate task. Usually, it is possible to converge a calcu-

lation with respect to its parameters. In case of the analytic continuation, however,

there is no systematic way to converge the imaginary frequency mesh. In Fig. 4.9 the

self-energy that is obtained by means of three different frequency meshes is shown.

Although, there is no way to converge the frequency mesh, practical experience gives

a rule of thumb. The choice of the frequency mesh is a compromise between accu-

racy and stability of the Padé approximation. If, on the one hand, a very coarse

frequency mesh is chosen the resulting self-energy might miss some essential fea-

tures. On the other hand, with a very fine frequency mesh the Padé approximation

might become unstable. The number of poles present in the Padé approximation

increases with the number of frequencies. Therefore, increasing the number of fre-

quencies also increases the number of effective poles of the Padé approximant. The

additional poles in turn might lead to spurious features in the self-energy. We have

tested various meshes for the evaluation of the GT self-energy and we found that a

frequency mesh with n = 20 . . . 30 frequencies with a maximal energy in the range

of!max = 1.5i . . . 2.5i htr, and an exponential factor of x = 1.01 . . . 1.05 gives stable

results, see Fig. 4.9.
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Figure 4.10: The analytic continuation of a Padé approximation can lead to spurious
peaks in the result in rare cases (blue dashed line). To smoothen such numerical
artifacts the result of multiple Padé approximations is averaged (red solid line).

The analytic continuation, which relies on a single Padé approximation to the

self-energy, can lead to spurious peaks in the self-energy in rare cases. An example

of such a case is shown as the blue dashed line in Fig. 4.10. The reason for this is

the following: the Padé approximation represents a function with an infinite number

of poles by a finite number of effective poles. Therefore, the analytic continuation

of such a function is an ill-posed problem. The Padé approximation is sensitive to

small errors in the data so that spurious features in the analytically continued func-

tion might arise. For example, if a Padé approximation contains effective poles lo-

cated close to the real frequency axis, the analytically continued function exhibits a

spurious feature in a small energy interval while being in good agreement with the

function elsewhere. Such a problem is also known from the analytic continuation

of quantum Monte Carlo data. Silver et al. [291] proposed the maximum-entropy

method which has been widely used in the analysis of experimental data before.

The maximum-entropy method is an image reconstruction approach. In case of the

analytic continuation, the image corresponds to the analytically continued function

and the Monte Carlo data provides the function on the imaginary frequency or time

axis. The maximum-entropy method defines an entropy function which accounts

for the properties of the analytically continued function, e.g., sum rules, positivity,

et cetera. Nowadays, the maximum-entropy method is widely used in the field of

condensed-matter theory [292–295]. Data obtained by a Monte Carlo algorithm is

prone to two types of errors: random noise and numerical errors. For such cases, an

image reconstruction approach is appropriate. In contrast, the self-energy as calcu-

lated in the present implementation might contain numerical errors while random
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noise does not occur. Numerical errors are smaller than random noise present in

Monte Carlo data. Therefore, we employ a pragmatic approach to smoothen the Padé

approximation. Instead of employing a single Padé approximation for the analytic

continuation, we use multiple approximations and the result is averaged over the re-

sulting analytically continued self-energies. For each of the Padé approximations we

add artificially a random noise to the imaginary frequency mesh. In particular, the

frequency mesh points are changed randomly using a uniform distribution in the in-

terval [�5, 5] · 10�9i htr. This procedure hinders the Padé approximation to give the

same effective poles in each repetition. As a result the analytic continuation does not

give spurious features as these are averaged out by the repetition of the Padé approx-

imation. The red curve in Fig. 4.10 is an example where 10000 analytic continuations

have been used each with a Padé approximation. A similar approach has been im-

plemented recently by Schött et al. [296]. They perform the analytic continuation by

averaging Padé approximants in which the number of input data points is changed.

Their algorithm performs well compared to the maximum-entropy method even if

the noise of the input data is increased beyond the magnitude of numerical errors.

For the calculation of the self-energy as a function of imaginary frequencies, we use

a frequency mesh with n = 24 frequencies and a maximum frequency of 2i htr.

4.6.2 Starting-Point Dependence

In practice, a self-energy calculation is usually performed perturbatively, which is

often called a one-shot calculation. Such a self-energy calculation is based on a prior

self-consistent mean-field calculation, which serves as the starting point. The results

of the subsequent self-energy calculation generally depend on the chosen starting

point, e.g., published results obtained from one-shot GW calculations, known as the

G0W0 procedure, show occasionally large deviations among themselves [297]. The

impact of the starting point on G0W0 calculations has been analyzed, also with re-

gard to the numerical treatment [297–301]. To get rid of the starting-point depen-

dence the Dyson equation (2.1.27) must be iterated until self-consistency is reached.

For example, the quasiparticle self-consistent GW (QSGW) scheme [144–147] allows

to iterate the Dyson equation by means of a best mean-field approximation to the

GW self-energy. It leads to the independence of GW calculations from the chosen

starting point [302, 303]. However, self-consistent self-energy calculations demand a

tremendous computational effort, so that many calculations are limited to one-shot

procedures because of their practicality.
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Springer et al. [203] and Zhukov et al. [67–69,204] were among the first who imple-

mented the GW+T theory for real materials from first principles. These implemen-

tations used the LSDA as starting point and their self-energy results were obtained

by means of a one-shot calculation. In these implementations, the GT self-energy

is combined with the GW approximation in order to account for many-body effects

which are not present in the GW approximation. The present implementation em-

ploys the GT approximation as an extension to the chosen starting point. This means,

the single-particle energies✏↵qn of the starting point are assumed to contain the many-

body effects except for those of the GT approximation. The quasiparticle energies are

obtained by adding the contribution of the GT self-energy

E↵qn = ✏↵qn +
Z

dr dr0'↵⇤qn(r)S
↵
GT(r, r0; E↵qn)'

↵
qn(r

0). (4.6.1)

For an extension in the flavor of the GW+T theory, the starting point must be the

result of a (self-consistent) GW self-energy calculation. However, it should be noted

that the multiple-scattering T matrix, as it is implemented, derives from the static

limit of the GW approximation. Consequently, the self-consistent COHSEX self-

energy, i.e., the self-consistent solution to the static limit of the GW self-energy, is

an even better starting point for a subsequent GT self-energy calculation than a self-

consistent GW calculation. Therefore, we use the COHSEX Green function as starting

point for the GT self-energy. However, the self-consistent scheme is computationally

very demanding and it does not allow to perform calculations for k points different

from the ones in the initially chosen set (14 ⇥ 14 ⇥ 14 in our case).

As an alternative to the COHSEX Green function, the corrected LSDA Green func-

tion can be used as a starting point. The use of the corrected LSDA Green function

for the calculation of the GT self-energy has a couple of practical advantages. The

calculation of the corrected LSDA Green function comes at the cost of a usual LSDA

calculation, i.e., it is computationally much less demanding than a self-consistent

COHSEX self-energy calculation. Furthermore, the corrected LSDA Green function

allows to extend the chosen k-point set by additional k points. This enables the cal-

culation of the self-energy beyond the k-point set employed for the calculation, i.e.,

fine details of the band structure can also be investigated. The question is, however,

if there is a justification for the use of the corrected LSDA Green function. In this

respect, the investigation of the starting-point dependence of the spin-wave disper-

sion revealed that the spin-wave dispersion starting from the corrected LSDA Green

function resembles that of the COHSEX Green function in the case of Fe, Co, and Ni,
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Figure 4.11: The real part of the self-energy evaluated using either the corrected
LSDA (blue solid line) or the COHSEX (red dashed line) Green function as starting
point. The self-energy for a majority (minority) spin state is shown in the upper
(lower) row for the three cases Fe, Co, and Ni (from left to right). The GT approx-
imation to the self-energy is evaluated for the same states as in Fig. 4.8. The Fermi
level is set to zero.

compare Section 3.5.3. This indicates that the multiple-scattering T matrix, which

is part of the magnetic response function, exhibits practically the same behavior for

the corrected LSDA and the COHSEX Green function in those materials. However,

the use of the LSDA solution comes with a drawback as it hides all its many-body

effects in the exchange-correlation potential. Therefore, it is not possible to define a

double-counting term that accounts for many-body effects present in the exchange-

correlation potential as well as in the GT self-energy. From a practical point of view,

however, the advantages of the corrected LSDA Green function approach outweigh

its drawbacks if the difference between both starting points is small. The results for

the GT self-energy calculated with the corrected LSDA and the COHSEX Green func-

tion, presented in Fig. 4.11, actually support this viewpoint. In particular, the results

for iron and cobalt are encouraging. The self-energies are practically on top of each

other except for mild deviations for the minority states. In case of nickel the ampli-

tude of the self-energy seems to be reduced slightly when using the self-consistent

COHSEX Green function compared to the corrected LSDA one. Nevertheless, also

in the case of nickel the main features of the self-energy appear at the same energies

for both Green functions. This indicates that both self-energies, starting from either

the corrected LSDA or the COHSEX Green function, lead qualitatively to the same
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renormalization. The next section analyzes the results of the GT self-energy calcula-

tions for the transition metals iron, cobalt, and nickel. In the course of this analysis,

we give more details about the starting-point dependence of the GT self-energy with

respect to the corrected LSDA and the COHSEX Green function.

4.7 Results

The GT approximation to the electronic self-energy has been calculated for the ele-

mentary bulk ferromagnets Fe, Co, and Ni. As a mean-field starting point, we em-

ploy the COHSEX Green function if not stated otherwise. The GT self-energy cal-

culated for the three elementary ferromagnets share a number of common features.

For example the self-energy is found to be weakly momentum dependent, i.e., the

self-energy of a single-particle state'↵qn(r) hardly changes with respect to a change

of its Bloch vector q. The self-energies of both spin channel, shown in Figure 4.12 for

the cases Fe, Co, and Ni, are typical examples where the self-energy hardly changes

for various states along a specific band. The weak momentum dependence of the

GT self-energy can be understood by a gedankenexperiment. The magnon excita-

tion energies are typically of the order of meVs, i.e., the excitation energies are much

smaller than the energy scale of electronic excitations. Therefore, the spin-wave dis-

persion, i.e., the change of the spin-wave excitation energy with respect to a change

of its momentum plays a subordinate role. Under the assumption that the spin-

wave dispersion can be approximated by a single excitation energy!(k) = !0, the

self-energy becomes momentum independent. In this limit, the self-energy depends

only on the constant magnon excitation energy and the electronic density of states,

compare Eqs. (4.5.5) and (4.5.6) and the discussion thereafter. The GT self-energy

is close to the limiting case of a momentum independent self-energy. However, the

weak momentum dependence in combination with the strong frequency dependence

might lead to important renormalization effects.

In addition, the GT self-energy exhibits a particle-hole asymmetry for the three

cases iron, cobalt, and nickel, meaning that the GT self-energy leads to a substan-

tially different renormalization of electron and hole states, compare the self-energies

in Fig. 4.12 above and below the Fermi level ! = 0. The particle-hole asymme-

try stems from the difference between the strong and the weak magnons. Strong

magnons involve the spin-flip of a majority spin, which is much more likely than the

spin-flip of a minority spin contained in the weak magnons. The strong magnons
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4. Electron-Magnon Scattering

are important for the self-energy of majority holes and minority electrons, the corre-

sponding scattering processes are depicted in Fig. 4.7. The particle-hole asymmetry

is particularly pronounced in iron as well as for the majority spin channel of cobalt

and nickel, see Fig. 4.12. In iron, the effect of the strong magnon on the minority

spin self-energy manifests itself as a pronounced dip in the self-energy just above

the Fermi level ! = 0. This effect seems to be suppressed in the case of cobalt and

almost absent in the case of nickel. The scattering of a minority electron that involves

a strong magnon proceeds via the unoccupied majority states of which the d states

are most important. In cobalt and nickel practically all majority d states are occupied

so that this causes the suppression of the self-energy, cf. density of states in Fig. 3.4.

Furthermore, the GT self-energy is strongly spin dependent, i.e., the self-energy

of a majority state is substantially different from that of a minority state, compare

upper and lower row of Fig. 4.12. The reason is that the magnon-induced interaction

T couples both spin channels. As a consequence, the self-energy of a majority state is

determined by the density of minority states and vice versa. If we again consider the

influence of the strong magnon as an example, see Fig. 4.7, the self-energy of a ma-

jority hole state is determined by the density of occupied minority states. In contrast,

it is the density of unoccupied majority states that is important for the self-energy of

a minority electron state. As a result, the self-energy yields a spin-dependent renor-

malization.

Finally, the amplitude of the self-energies shown in Fig. 4.12 decreases in the se-

ries iron, cobalt, and nickel. We ascribe this trend to the fact that the minority d-state

occupation increases in the series of the elementary ferromagnets Fe, Co, and Ni. The

unoccupied minority d states are important for the formation of the strong magnon.

Consequently, an increase of the minority d-state occupation leads to a decrease of

the spectral weight of the strong magnon. This, in turn, results in the decrease of the

self-energies in the series of the elementary ferromagnets.

In the following, we analyze the GT self-energy and the resulting electronic spec-

tral function individually for each of the three elementary ferromagnets. We find for

all the elementary ferromagnets anomalies in the spectral function, in particular in

the case of iron, we find a pronounced additional peak indicating the appearance of

new quasiparticle states to which we refer as magnaron states, see Section 4.4.4. In

addition, we analyze lifetime effects of the self-energy on the single-particle states.
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4.7. Results

4.7.1 Iron

Iron has often been investigated experimentally and the measurements show some

clear deviations from the theoretical predictions. Iron is the ferromagnetic material

in which the de Haas-van Alphen (dHvA) effect was measured first [304]. The dHvA

effect enables to measure the Fermi surface and the effective masses. Lonzarich [278]

found effective masses in the range of 3 to 6 times larger than the free electron mass

for most Fermi surface sheets. Compared to band structure calculations he reported

mass enhancement factors in the range of 1.5 to 3.0. In a recent angle-resolved pho-

toemission spectroscopy (ARPES) experiment, Schäfer et al. [58, 206] found similar

mass enhancement factors. In addition, they observed a band width reduction for

shallow bands of 30%. Older ARPES studies [169, 173] for occupied states and in-

verse photoemission spectroscopy (IPS) studies [172] for unoccupied states provide

additional data of the experimental band structure. These experiments report a 10%

narrowing of the d bands. Time-resolved two-photon photoemission (TR-2PPE) ex-

periments reveal that the spin-averaged relaxation times in iron are shortest among

the elementary ferromagnets [60]. The ratio of majority and minority relaxation times

⌧"/⌧# is in the range between 1 and 2. Sánchez-Barriga et al. [62, 64] performed

ARPES studies on iron and compared their results to a LDA+DMFT and three-

body scattering approximation calculation. They found that both approaches, the

LDA+DMFT approach and the three-body scattering approximation approach, im-

prove the description of correlation effects in iron over that of plain LDA. However,

the effective masses and the line width of the photoemission peaks are underesti-

mated. An early DMFT study by Katsnelson et al. [65] found a strong damping of the

quasiparticle states beyond 1 eV binding energy. Similarly, Grechnev et al. [66] con-

ducted a LDA+DMFT study revealing that the main correlation effects are present

in the majority spin channel. Zhukov et al. [67, 69, 70] performed GW+T calculations

to study the influence of the magnon excitations on the electron states in iron. They

found that the electron-magnon interaction yields an essential reduction of the life-

time of the minority d states. In comparison, the influence of the electron-magnon

interaction on the free-electron-like minority electrons and all the majority electrons

is found to be much smaller.

We have performed an electron-magnon self-energy calculation in the GT ap-

proximation starting from the self-consistent COHSEX Green function. The electron-

magnon self-energy and the corresponding spectral function is shown in Figs. 4.13

and 4.14 for majority and minority states along the G to N direction, respectively.
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Figure 4.13: Self-energy (upper row) and the corresponding spectral function (lower
row) for three majority states of a band along the G to N direction in iron. The in-
sets of the spectral function show the band structure along that k direction and the
considered state is indicated as a red cross. The single-particle energy is indicated
as a grey thin vertical line in the upper and lower panel. The dash-dotted line (up-
per panel) corresponds to!�✏"qn and its intersection with the self-energy indicates a
quasiparticle solution. The self-consistent COHSEX Green function serves as starting
point for the GT self-energy calculation. The Fermi level is set to zero.

The coupling of the electronic spectrum to strong magnons, which proceeds via the

scattering processes schematically shown in Fig. 4.7, leads to a resonant feature in

the self-energy. These resonances manifest themselves as a peak in the imaginary

part of the self-energy, accompanied by a corresponding strong variation in the real

part. The resonances within the self-energy indicate the energy range in which the

electron-magnon interaction is particularly effective. In other words, the more effec-

tive the electron-magnon interaction, the larger the imaginary part of the self-energy.

The resonance of the electron-magnon interaction depends on the spin state. While

the majority spin self-energy exhibits the resonance below the Fermi level at bind-

ing energies larger than 1 eV, the resonance occurs just above the Fermi level for

the minority spin states, cf. Figs. 4.13 and 4.14. If the electron-magnon interaction is

weak, this causes a mixing of a single-particle state with magnon excitations form-

ing a quasiparticle that manifests itself in a well-defined quasiparticle peak in the

spectral function. In case of iron, however, we find, besides the well-defined quasi-

particle peaks, additional peaks in the spectral function due to the electron-magnon

interaction, see lower row of Figs. 4.13 and 4.14. The additional peak occurs if the
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Figure 4.14: Same as Fig. 4.13 for a minority band along the G to N direction in iron.
The dash-dotted line in the upper panel corresponds to!�✏#qn.

electron-magnon interaction is sufficiently strong. It results from the mixing of a

quasiparticle state with a many-body state to which we refer to as a magnaron state,

a coherently bound state of single-particle and magnon excitations. The many-body

character of the magnaron state depends on the spin channel. In case of the majority

spin channel, the additional peak appears due to the coupling of a majority hole to a

coherent superposition of minority holes and strong magnon excitations. In case of

the minority spin channel, the additional peaks appears due to the coupling of a mi-

nority electron to a coherent superposition of majority electrons and strong magnon

excitations. We have discussed these magnaron states in details in Section 4.4.4.

The magnaron state is intimately connected to the properties of the self-energy

as it appears energetically at the resonance of the self-energy. Therefore, the weak

momentum dependence of the self-energy transfers to a weak momentum depen-

dence of the magnaron state and consequently the magnaron state forms a flat band,

schematically shown as green dotted line in the right panel of Fig. 4.15. If an elec-

tronic band, depicted as red dashed line in that figure, crosses the flat band of the

magnaron state, the electron-magnon interaction causes a mixing of these states lead-

ing to additional peaks in the spectral function. The electronic bands, considered in

Figs. 4.13 and 4.14, are examples thereof. The additional peaks can also be seen in

the quasiparticle dispersion. The left panel of Fig. 4.15 exemplarily shows the ma-

jority quasiparticle dispersion of the band considered in Fig. 4.13. Along the band
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Figure 4.15: Additional quasiparticle peak in the spectral functions indicating the
emergence of a new quasiparticle to which we refer as the magnaron state. Left:
majority single-particle band (red line) along the G to N direction in iron and its
renormalized spectral functions shown as blue color-coded map calculated with the
corrected LSDA Green function. The Fermi level is set to zero. Right: schematic
representation of the mixing of an electron state (red dashed) and a magnaron state
(green dotted). The hybrid states change their many-body character (color gradi-
ent along the bands shown as solid line) between electronic and magnaron-like state
depending on the momentum k.

the many-body character of the two quasiparticle states change due to the electron-

magnon interaction and so spectral weight is transfered from one peak to the other.

The change of the many-body character is schematically represented as the color gra-

dient along the bands shown as solid lines in the right panel of Fig. 4.15. A similar

effect can be seen in the band structure of the minority spin channel, shown in the

right panel of Fig. 4.18, for the band considered in Fig. 4.14. The mixing of the elec-

tronic quasiparticle state and the magnaron state leads to an energetic splitting and

a broadening of the corresponding quasiparticle peaks. The splitting as well as the

broadening of the quasiparticle peaks is particularly strong in the majority spin chan-

nel. The two quasiparticle peaks are separated by approximately 1.8 eV. In contrast,

the separation of the two minority quasiparticle solutions amounts to approximately

0.6 eV. The reason for the difference between the majority and minority spin channel

comes from the shape of the corresponding self-energies. The mixing and, by this,

the splitting of the quasiparticle solutions is determined by the resonance features of

the self-energy. While the real-part of the majority spin self-energy exhibits a broad

resonance feature below the Fermi level, cf. upper row of Fig. 4.13, the resonance fea-

ture for the minority states is a narrow dip, cf. upper row of Fig. 4.14. This, in turn,
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Figure 4.16: Starting-point dependence of the quasiparticle inverse lifetime employ-
ing the corrected LSDA (blue crosses) and the COHSEX Green function (red circles)
compared to experimental values (black squares) taken from Knorren et al. [60]. The
quasiparticle inverse lifetime is calculated for a majority band along the G to N direc-
tion shown as the red thick line in the inset.

leads to the wide and narrow splitting of the mixed quasiparticle states within the

majority and minority spin channel, respectively.

The broadening of the majority quasiparticles and minority quasiparticles, which

is inversely proportional to their lifetime, is shown in Figs. 4.16 and 4.17, respectively.

The results are obtained with the COHSEX Green function, shown as red circles,

and with the corrected LSDA Green function, shown as blue crosses, compared to

the results of a TR-2PPE experiment [60]. The inverse lifetimes obtained with the

corrected LSDA Green function are in good agreement to the data obtained with the

COHSEX starting point. This indicates that the corrected LSDA Green function can

be employed for the calculation of the GT self-energy alternatively to the COHSEX

one. The corrected LSDA Green function has the practical advantage that it allows

to calculate the self-energy at arbitrary k points easily.

The inverse lifetimes increase quadratically around the Fermi level for both spin

channels. The electron-magnon scattering involving the strong magnon excitations

causes the imaginary part of the majority and minority quasiparticle solution to in-

crease strongly below and above the Fermi level, respectively. The different shapes of

the imaginary part of the quasiparticle solution as a function of the binding energy

are a consequence of the spin asymmetry of the self-energy. In case of the major-

ity spin channel, the inverse lifetime attains values larger than 0.6 eV, see Fig. 4.16.

Apparently, the larger the imaginary part of the quasiparticle solution, the larger

the scatter within the obtained data. There are a number of reasons for this. First,
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Figure 4.17: Same as Fig. 4.16 for a minority band along the G to N direction.

the quasiparticle equation is solved by a fitting procedure. The fitting procedure is

particularly stable if the imaginary part of the self-energy is small. Second, in the

presence of two mixed quasiparticle states a large imaginary part leads to an over-

lap of the corresponding quasiparticle peaks so that a unique determination of the

two quasiparticle solutions is complicated further. In addition, the self-energy varies

strongly with respect to the binding energy, which is another reason why the solu-

tion of the quasiparticle equation is difficult to be found numerically. In spite of the

scatter within the data, the results clearly indicate the trend of the quasiparticle so-

lution’s imaginary part resembling the imaginary part of the self-energy taken for

a single state shown in Fig. 4.13. Near the binding energy of 1.5 eV there exists no

quasiparticle solution, this is a result of the splitting of the mixed quasiparticle states.

The large imaginary part at that binding energy indicates that the quasiparticle so-

lutions are overdamped leading to a complete loss of the quasiparticle peaks, cf. left

panel of Fig. 4.15. This is because the electron-magnon scattering is resonant in that

energy region. We find a very similar behavior for the minority spin channel, see

Fig. 4.17. Above the Fermi level there exists an energy range, between 0.2 eV and

0.8 eV, where no quasiparticle solution exists. This energy range corresponds to the

separation of the mixed quasiparticles. It is the energy range where the resonance of

the self-energy occurs, i.e., the real part of the self-energy exhibits the pronounced

dip and its imaginary part increases drastically.

The Figs. 4.16 and 4.17 show in addition to the calculated inverse lifetimes exper-

imentally measured results. In case of the minority spin channel the experimentally

observed inverse lifetime is obtained just in that energy range where the calcula-

tions do not yield a quasiparticle solution. The maximal inverse lifetime agrees well
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with the experimental value, although at slightly lower energies than obtained from

the self-energy calculation. We conclude that the spin-flip scattering process is an

important scattering channel for the unoccupied minority states close to the Fermi

level. In comparison, the lifetime of the unoccupied majority states are affected less

by the electron-magnon self-energy. This is a consequence of the spin asymmetry of

the self-energy. The comparison of the inverse lifetime of the majority states with

the experimental data indicates that the spin-flip processes, described by the GT

self-energy, give a significant contribution to the total inverse lifetime. Yet, the ex-

perimental inverse lifetime is considerably larger than the contribution coming from

the spin-flip processes. Our findings are in accordance with the GW+T calculations

by Zhukov et al. [67, 69, 70], they report that the inclusion of the spin-flip scattering

processes are important for the minority electron states to improve the agreement

between theory and experiment. Additionally, they find that spin-flip scattering af-

fects the majority electron states much less compared to the minority spin channel.

It is important to note that the GT self-energy accounts for the spin-flip processes,

while other scattering processes affecting the quasiparticle’s lifetime are missing.

For example the contribution from the GW self-energy, particle-particle scattering,

electron-phonon scattering, defect scattering, et cetera are not accounted for in the

present approach. Therefore, missing many-body effects in the GT approximation

might give a valuable contribution to lifetime effects. The mismatch between exper-

iment and theory for the lifetime of the majority states might be attributed to the

missing many-body effects in the GT self-energy. The missing many-body effects are

also the reason why the inverse lifetimes, shown in Figs. 4.16 and 4.17, decrease be-

low �2 eV and above 1 eV for the majority and minority states, respectively. In these

energy regions the electron-magnon scattering becomes less effective and other scat-

tering processes might become important.

As a conclusion of our analysis for iron, we discuss the renormalization of the

band structure calculated with the corrected LSDA Green function. The band struc-

ture gives an overview of the GT self-energy renormalization of the single-particle

states. The quasiparticle energies and lifetimes are shown as a blue color-coded map

in Fig. 4.18 together with the corrected LSDA band structure shown as the red line.

The left and right panel of that figure show the majority and minority states, respec-

tively. The particle-hole asymmetry and the spin asymmetry of the self-energy is

clearly visible in the renormalized band structure. Both spin channels experience a

strong renormalization due to the GT self-energy in the vicinity of the Fermi level.
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Figure 4.18: Band structure of bcc iron along the high-symmetry line P ! G ! N for
the majority (left) and the minority (right) states. The corrected LSDA band structure
is shown as the red solid line. The corresponding renormalized quasiparticle bands
including lifetime effects are shown as a blue color-coded map. The Fermi level of
the corrected LSDA Green function is set to zero.

While the majority spin states are affected most below the Fermi level, the minority

spin states are particularly renormalized above the Fermi level. The GT self-energy

leads to strong lifetime effects for the majority spin channel for binding energies

larger than 0.5 eV. Towards stronger binding energies the mixing of the electron and

magnaron state yields a strong increase of the inverse lifetime, which can even lead

to a complete loss of the quasiparticle peaks. In both spin channels the mixing of

electrons and magnarons leads to a splitting of the band and a strong broadening of

the quasiparticle states. This can be seen in the quadratic bands around the G point

considered along the G to N direction in Figs. 4.16 and 4.17. The curvature of these

quadratic free-electron-like bands flattens at the Fermi level indicating a renormal-

ization of the effective mass. We find for both spin channels effective-mass renor-

malizations (4.4.13) in the range of 1.5 � 1.6 along the G to N direction. These values

compare fairly well with the mass renormalization ratios of 1.8 ± 0.4 and 2.0 ± 0.4

reported by Schäfer et al. [206] for the minority and majority band, respectively. In

addition, Schäfer et al. [206] found a reduction of the occupied-band width compared

to a generalized gradient approximation calculation. They observe experimentally a

majority state at the P point at 0.57 eV binding energy. We find that this state, which
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appears in the corrected LSDA starting point at 0.68 eV binding energy, is renormal-

ized qualitatively correct to a lower binding energy of 0.37 eV. The same can be said

about the experimentally observed band width reduction in the minority spin chan-

nel. At the G point the binding energy is reduced from 0.49 eV to 0.34 eV. However,

these binding energies have to be taken with caution as we do not account for a new

Fermi level alignment.

As mentioned earlier, we find that the electron-magnon interaction gives an im-

portant contribution to the minority electron lifetimes yielding values in good agree-

ment with experiment [60]. Zhukov et al. [67] drew the same conclusions from their

GW+T calculations. For the majority electron states the electron-magnon interaction

is less effective. However, it gives a significant contribution to the experimentally

measured lifetimes. Our results compare well with DMFT studies of ferromagnetic

iron. For example, Katsnelson et al. [65] and Grechnev et al. [66] report a strong

damping of the majority quasiparticle states beyond 1 eV binding energy. The spec-

tral functions shown by Sánchez-Barriga et al. [62, 64] are in very good agreement

with our data. They also obtain a strong broadening of the majority quasiparticle

peaks in the energy range of �1 eV to �3 eV, but they do not discuss additional

peaks in the spectral function. We find magnaron states in the majority and minority

spin channel. We note that in the minority spin channel the quasiparticle dispersion

of the flat band at approximately 1.5 � 1.8 eV above the Fermi level extending from

the P to the N point exhibits an artificial oscillatory behavior. We ascribe this oscil-

latory behavior to a numerical artifact due to the analytic-continuation method used

for the frequency integration.

4.7.2 Cobalt

In the case of cobalt, experimental band structure data is scarce in the litera-

ture [174, 305]. The overall d-band width is found to be 20% narrower compared

to the prediction by a LSDA calculation. There is an ongoing debate over the quasi-

particle lifetime effects in cobalt. A recent low-energy high-resolution ARPES study

by Monastra et al. [61] found a quenching of the quasiparticle states for binding en-

ergies larger than 2 eV. In contrast, Mulazzi et al. [306] found in a soft x-ray angle

resolved photoemission spectroscopy (SX-ARPES) measurement for bulk ferromag-

netic cobalt that the spectral peak widths are narrower than previously observed in

the low-energy ARPES experiment by Monastra et al. [61]. Mulazzi et al. traced the

overestimation of the spectral peak width back to the final-state broadening. The
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Figure 4.19: Same as Fig. 4.13 for a majority band along the G to X direction in cobalt.

dominance of the final state in the photoemission mapping of the Fermi surface of

cobalt was shown earlier by Gao et al. [307]. In a TR-2PPE experiment by Knor-

ren et al. [60] it was found that in fcc cobalt the spin-averaged lifetime of electron

states is longest among the elementary ferromagnets. Cinchetti et al. [308] performed

a time-resolved magneto-optical Kerr effect as well as a spin-, energy-, and time-

resolved two-photon photoemission experiment on a thin cobalt film. They found

that the electron-magnon interaction gives a significant contribution to the spin dy-

namics of single electrons excited close to the Fermi level. A review on hot electron

lifetimes in ferromagnetic metals by TR-2PPE can be found in [309]. The LDA+DMFT

study by Grechnev et al. [66] and the combined ARPES and LDA+DMFT study by

Sánchez-Barriga et al. [63,64] find a strong spin-dependent lifetime effect for binding

energies larger than ' 1 eV.

We study cobalt in the fcc crystal structure. Figures 4.19 and 4.20 show the self-

energy and the corresponding spectral function for a majority and minority band

along the G to X direction as characteristic examples. The self-energies, shown in the

upper row of these figures, exhibit a particle-hole asymmetry very similar to that of

iron. However, the effect of spin-flip scattering for the minority spins seems to be

suppressed, both in comparison to that of the majority spin states, and also in com-

parison to the minority spin self-energy of iron, cf. Figs. 4.14 and 4.20. The difference

between iron and cobalt might be attributed to the different occupations of the d

states. While iron is classified as a weak ferromagnet as the majority d states are not
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Figure 4.20: Same as Fig. 4.14 for a minority band along the G to X direction in cobalt.

fully occupied, cobalt (and also nickel) is a strong ferromagnet in the sense that all

majority d states are occupied. A strong-magnon process of a minority spin state in-

volves the excitation of electron-hole pairs in the majority spin channel. The d states

are particularly important for the formation of collective spin-wave excitations. Con-

sequently, the lack of unoccupied majority d states in cobalt leads to a suppression of

such spin-flip scattering processes resulting in a weak minority spin self-energy. In

the vicinity of the Fermi level, the real part of the minority spin self-energies ranges

from �20 meV to 50 meV, hardly changing the single-particle energies. Just as well,

the self-energy gives only a small contribution to the quasiparticle lifetimes. As a

consequence the self-energy hardly affects the minority states in cobalt leading to

well defined quasiparticle peaks in the spectral function, see lower row of Fig. 4.20.

The electron-magnon self-energy cannot account for the inverse lifetimes of minor-

ity electrons measured in a TR-2PPE measurement [60] that observes inverse life-

times larger than 150 meV at 1 eV above the Fermi level. In contrast to the minority

spin channel, the renormalization of the majority states is strong. The self-energy of

the majority states yields a pronounced quasiparticle renormalization, particularly

strong for hole states. In the case of cobalt, the majority spin self-energy is prac-

tically featureless above the Fermi level, see Figure 4.19. This is a consequence of

the majority d-state occupation, i.e., unoccupied majority d states are scarce so that

weak-magnon scattering processes, which determine the self-energy above the Fermi

level, are suppressed. The strong-magnon scattering leads to a resonance feature in
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the self-energy below the Fermi level very similar to that of iron, cf. Figs. 4.13 and

4.19. However, in cobalt the resonance feature extends over a larger energy range

compared to iron, i.e., the imaginary part of the self-energy is a rather broad function

meaning that it attains large values in a comparatively large energy range. This, in

turn, leads to asymmetric quasiparticle peaks of the Breit-Wigner form over a wide

range of binding energies. The spectral functions in the lower panel of Fig. 4.19 are

examples for this. In contrast to iron, in which we found two peaks in the spectral

function, the quasiparticle peaks in cobalt exhibit strongly broadened Breit-Wigner

shaped peaks but no double-peak structures. At energies near 1.5 eV where the imag-

inary part of the self-energy is maximal, the quasiparticle peak is strongly damped,

see middle column of Fig. 4.19. The damping of the quasiparticle indicates that the

electron-magnon interaction is particularly strong in that energy region leading to

incoherent many-body states. At the bottom and the top of the band the quasipar-

ticle peaks have shoulder structures above and below the main peak, respectively.

These shoulders indicate a mixing of the majority hole states with the magnaron

state, schematically shown in the right panel of Fig. 4.15, similar to the mixing effect

found in iron. However, the electron-magnon interaction is not strong enough to

lead to the appearance of a distinct second peak in the spectral function as in the case

of iron. Instead, the hybrid states manifest themselves as a quasiparticle peak plus a

shoulder structure that occurs above or below the main peak.

In addition, we find a dispersion anomaly in a free-electron-like majority band

crossing the Fermi level in the G to K direction, see Fig. 4.21. The dispersion anomaly

is accompanied by a flattening of the band dispersion with an effective-mass renor-

malization (4.4.13) of ' 1.2 at the Fermi level. Below the Fermi level, the inverse

lifetimes of the quasiparticle increase strongly (left panel) yielding a rapid increase

of the broadening of the quasiparticle peaks that can be seen in the spectral functions

(right panel). The quasiparticle broadening superimposes the renormalization of the

band dispersion so that with increasing binding energies a clear interpretation of the

band dispersion becomes increasingly difficult. However, for low binding energies

a kink structure is observable in the quasiparticle dispersion that exhibits a maxi-

mal deviation from the single-particle dispersion near 200 meV binding energy. At

this energy the inverse lifetime jumps to approximately 220 meV and remain almost

constant up to a binding energy of 300 meV. For larger binding energies the broad-

ening of the quasiparticle peaks increases further leading to a strong smearing of the

band dispersion, see spectral functions in the right panel of Fig. 4.21. In contrast, the
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Figure 4.21: Quasiparticle lifetime broadening and dispersion anomaly caused by
the electron-magnon interaction for a majority band in cobalt which crosses the Fermi
level along the G to K direction. Left: imaginary part of the quasiparticle solution
(blue crosses) compared to experimental data [60] (black squares). Right: single-
particle band (red line) and its renormalized spectral functions shown as a blue color-
coded map. The corrected LSDA Green function serves as starting point, the Fermi
level is set to zero.

electron-magnon interaction is much less effective above the Fermi level and it can

only account partly for the experimentally measured inverse lifetimes. At 1 eV above

the Fermi level the imaginary part of the quasiparticle solution amounts to ' 20 meV

while in experiment a value of ' 80 meV is observed.

In summary, we find a pronounced spin-dependent quasiparticle renormaliza-

tion in fcc cobalt. The band structure together with lifetime effects is shown in

Fig. 4.22 for the majority spin (left) and the minority spin (right) states along the

X ! G ! K direction. The renormalization of the minority spin states (right) is

rather small and lifetime effects are almost equally important for occupied and unoc-

cupied states. In contrast, the occupied majority states (left) are affected strongly by

the electron-magnon interaction. The electron-magnon interaction leads to a strong

broadening of the quasiparticle peaks. The quasiparticle damping sets in at binding

energies higher than 0.5 eV. Our results are in accordance with a previous ARPES

measurement and a three-body scattering study by Monastra et al. [61]. This mea-

surement found that the quasiparticle peaks vanish for binding energies larger than

2 eV due to many-body effects. They found that the many-body effects are much

stronger for the majority states than for the minority states. LDA+DMFT calculations

by Grechnev et al. [66] and Sánchez-Barriga et al. [63,64] come to similar conclusions.

The LDA+DMFT approach yields a strongly spin-dependent quasiparticle renormal-
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Figure 4.22: Same as Fig. 4.18 for fcc cobalt along the X ! G ! K direction.

ization in cobalt, where the majority hole states experience strong lifetime effects for

binding energies larger than ' 1 eV.

For the unoccupied states we find that the electron-magnon interaction does only

partly account for the quasiparticle lifetimes seen experimentally [60, 310]. For a

quantitative agreement with experiment additional many-body effects like the GW

self-energy, the particle-particle scattering, the electron-phonon interaction, et cetera

might be important. We discussed the mixing of a magnaron state and the single-

particle states leading to shoulder structures in the spectral functions and a strong

damping of the quasiparticle peaks in the energy window 1.0 � 1.5 eV binding en-

ergy, cf. Fig. 4.19. It is that energy window, in which the spectral functions of the

majority spin channel appear particularly smeared, see left panel of Fig. 4.22. In

addition, we find a kink structure in the free-electron-like band along the G to K di-

rection below the Fermi level. It manifests itself as a substantial change of the band

dispersion, accompanied by a rapid increase of the quasiparticle broadening, cf. 4.21.

The electron-magnon interaction becomes less effective for binding energies beyond

3 eV and with it the lifetime broadening decreases.

4.7.3 Nickel

Nickel has gained a lot of attention from an experimental point of view. Its Fermi

surface and its band structure have been studied experimentally by dHvA experi-
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ments [311–313] already in the 1960’s. Early ARPES experiments [190, 192, 314] that

measured the band structure and the exchange splitting of nickel revealed substan-

tial differences between theory and experiment. For example the calculated exchange

splitting is typically too large, and also the measured d-band width is 30% smaller

than the calculated value. In addition, density-functional calculations do not account

for the 6 eV satellite in the density of states that has been observed by XPS experi-

ments [194, 196–198]. It has been shown [201–203] that hole-hole interactions are

responsible for the 6 eV satellite.

More recent ARPES experiments revealed correlation effects in the band struc-

ture occurring near the Fermi level. For example, Higashiguchi et al. [205] found a

kink structure in the dispersion of a minority band that originates from the electron-

phonon interaction. They point out, however, that additional electron correlations

contribute to the spectral features near the Fermi level. Hofmann et al. [59] performed

an ARPES study of a minority band. They observed a renormalization when com-

pared to a Gutzwiller calculation [315, 316] that shows a kink structure in the band

dispersion at 250 � 300 meV binding energy. In addition, a comparison of photoe-

mission data to three-body scattering calculations revealed that local correlations are

important for a realistic description of the electron states near the Fermi surface [275].

Knorren et al. [60] found in a TR-2PPE experiment that the spin-averaged electron

lifetime is smaller than that of cobalt but larger than that of iron. Andres et al. [317]

conducted a TR-2PPE experiment for a nickel thin film. They observed a low spin

asymmetry in the decay rates of the photoexcited electrons. This is supported by

a combined ARPES measurement and LDA+DMFT study perfromed by Sánchez-

Barriga et al. [64]. They found a linewidth broadening in nickel that is approximately

equal for both spin channels. Grechnev et al. [66] conducted LDA+DMFT calcula-

tions for Fe, Co, and Ni and they found that the spin-dependent behavior of the

self-energy is less pronounced in nickel compared to iron and cobalt. In a GW+T cal-

culation Zhukov et al. [67,69,70] have shown that the decay of electron states in nickel

is only weakly affected by the electron-magnon interaction. However, a GW calcula-

tion including spin-orbit coupling [318] demonstrates that the spin mixing gives an

important contribution to the spin-dependent lifetimes.

The majority and minority self-energy together with the resulting spectral func-

tions is shown in Figs 4.23 and 4.24, respectively. The self-energy is calculated for

a band dispersing along the G to X direction as indicated in the insets. In case of

iron and cobalt we have found a weak dependence of the self-energy on the Bloch
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Figure 4.23: Same as Fig. 4.13 for a majority band along the G to X direction in nickel.

momentum. Differently to these cases, the self-energy of nickel shows a stronger

momentum dependence. In particular, the majority self-energy has a comparatively

strong momentum dependence that we explain with the density of states of nickel.

The majority self-energy is determined by the minority density of states. In contrast

to iron and cobalt, where the minority density of states is rather flat in the vicinity

of the Fermi level, in nickel the minority density of states exhibits a peak just at the

Fermi level, cf. Fig. 3.4. The peak in the density of states, in turn, leads to a strong

variation of the number of available scattering states in the vicinity of the Fermi level

leading to a stronger momentum dependence of the self-energy compared to that of

iron or cobalt.

In addition, the pronounced dip in the real part of the minority spin self-energy

just above the Fermi level as seen in iron and to a lesser degree in cobalt is absent in

the case of nickel, compare the minority spin self-energies for iron, cobalt, and nickel

in Figs. 4.14, 4.20, and 4.24, respectively. The minority spin self-energy of nickel is

practically featureless above the Fermi level. The reason is that nickel has almost

all d states filled. As a consequence the formation of strong magnon excitations as

well as the spin-flip scattering is suppressed for minority electron states. The same

argument explains why we find the energy scale of the self-energy to be smallest

among the elementary ferromagnets.

In contrast to iron and cobalt, the particle-hole asymmetry of the minority spin

self-energy is reversed for nickel. This means that differently to the minority states of
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Figure 4.24: Same as Fig. 4.14 for a minority band along the G to X direction in nickel.

iron and cobalt, the minority self-energy in nickel yields a stronger renormalization

for hole states than for electron states. Nevertheless, the electron-magnon interac-

tion causes overall a mild renormalization of the minority single-particle states. The

quasiparticle peaks, occurring in the spectral function shown in the lower panel of

Fig. 4.24, are well defined having a symmetric Lorentzian shape. The imaginary part

of the minority quasiparticle solutions of that band does not exceed 40 meV indicat-

ing that lifetime effects for the minority quasiparticles due to the electron-magnon

interaction play a subordinate role. Compared to the other elementary ferromagnets

we find that lifetime effects for these states are smallest in nickel.

Similarly, we find that the majority states of nickel are affected least by the

electron-magnon interaction compared to iron and cobalt. The self-energy yields a

moderate renormalization of the majority single-particle states leading to fairly well

defined quasiparticle peaks. Nevertheless, also in the case of nickel the electron-

magnon self-energy causes the appearance of anomalies within the quasiparticle

peaks. For example, the quasiparticle peaks shown in the lower row of Fig. 4.23

exhibit shoulder structures besides the main peak. Close to the Fermi level, right col-

umn of that figure, the shoulder structure is distinctly visible in the main quasipar-

ticle peak. The shoulder structure is an indication for the appearance of magnarons

that mix with the electronic states. Similar shoulder structures, although more pro-

nounced, are seen in the case of cobalt, cf. Fig. 4.19.

Moreover, we find a kink structure in the quasiparticle dispersion of a free-
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Figure 4.25: Same as Fig. 4.21 for a majority band along the G to K direction in nickel.

electron-like majority band crossing the Fermi level along the G to K direction, see

Fig. 4.25. The dispersion anomaly is very similar to that in the case of cobalt,

cf. Fig. 4.21. As in the case of cobalt, the quasiparticle dispersion flattens com-

pared to the single-particle dispersion. However, the effective-mass renormalization

(4.4.13) is smaller and amounts to ' 1.12 at the Fermi level. In the energy range of

�200 . . . 200 meV around the Fermi level, the inverse lifetimes grow quadratically

and are approximately equal for electron and hole states. However, for binding en-

ergies larger than 200 meV the inverse lifetime increases rapidly. The behavior of

the inverse quasiparticle lifetimes as a function of the binding energy is very similar

to that of the free-electron-like band of cobalt considered in Fig. 4.21. In both cases

the inverse lifetimes strongly increase beyond 200 meV binding energy. However,

the broadening of the quasiparticle peaks in nickel is considerably smaller than that

in cobalt. As a consequence the quasiparticle band dispersion can be seen also for

binding energies higher than 500 meV, see right panel of Fig. 4.25. The real-part of

the self-energy renormalization, which corresponds to the difference of the blue and

the red curve in the right panel of Fig. 4.25, peaks at around 220 meV binding energy

with an amplitude of approximately 70 meV.

Hofmann et al. [59] conducted an ARPES study of a minority band along the G

to K direction. They found a deviation from the calculated band dispersion at the

binding-energy range of 250 � 300 meV that takes the form of a kink structure in the

band dispersion. They attribute this kink structure, whose maximal deviation to the

calculated band amounts to ' 25 meV, to the electron-magnon interaction. We find a

shallow renormalization of the quasiparticle dispersion that increases rather mono-

tonically from 20 meV at the Fermi level to 36 meV at 0.6 eV binding energy, see left
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Figure 4.26: Renormalization of a minority quasiparticle band dispersion along the
G to K direction in nickel. Left: real part of the self-energy correction. Right: single-
particle band (red line) and its renormalized spectral functions shown as a blue color-
coded map. The corrected LSDA Green function serves as starting point, the Fermi
level is set to zero.

panel of Fig. 4.26. Interestingly, at approximately 200 � 250 meV binding energy a

noticeable deviation from the overall renormalization trend occurs. The amplitude

of the deviation, however, amounts only to a few meVs and cannot explain the ex-

perimentally observed deviation [59]. Important to note is that the renormalization

of the quasiparticle dispersion, shown in the right panel of Fig. 4.26, is calculated

with respect to the corrected LSDA Green function. The experimentally observed

deviation of ' 25 meV is calculated with respect to a Gutzwiller [315,316] reference.

The majority states above the Fermi level hardly change due to the electron-

magnon interaction. Above 0.5 eV the inverse lifetimes of the majority quasiparti-

cles are almost constant, see Fig. 4.25. The spin-flip scattering does not contribute

significantly to the experimentally observed inverse lifetimes of the majority quasi-

particles [60, 309]. The same can be said about the minority states (not shown in

that figure). We find similar self-energy effects for the minority electrons underesti-

mating the experimental inverse lifetimes. In particular, the renormalization of the

electron states shows a low spin asymmetry, i.e., the renormalization of majority and

minority states are fairly similar, compare the spin channels within the band struc-

ture shown in Fig. 4.27. These results are in accordance with the GW+T calculations

by Zhukov et al. [67]. They conclude that the effect of spin-flip scattering on electron

states in nickel is generally weak. Although the experimentally observed inverse

lifetimes cannot be explained by the electron-magnon interaction, the low spin asym-

metry is also seen experimentally [60, 317]. Differently to iron and cobalt, in nickel
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Figure 4.27: Same as Fig. 4.18 for fcc Ni along the X ! G ! K direction.

we find that the minority hole states are renormalized slightly stronger than the elec-

tron states. Nevertheless, the renormalization of minority states is weak and we find

that the quasiparticle energies are hardly affected and the electron-magnon interac-

tion gives a small contribution to the quasiparticle lifetimes. The kink structure in the

minority band crossing the Fermi level in the vicinity of the K point observed by Hof-

mann et al. [59] is not clearly seen within our approach. Nevertheless, we find also a

noticeable deviation within the band renormalization that appears at 200 � 250 meV

binding energy, cf. Fig. 4.26.

The majority hole states experience a pronounced lifetime broadening compared

to the electron states. Still, lifetime effects are smallest in nickel among the elemen-

tary ferromagnets. Along the high-symmetry line G to K we find a kink structure

in the band dispersion below the Fermi level. The kink structure peaks at approxi-

mately 220 meV binding energy, cf. Fig. 4.25. The kink structure is accompanied by

a jump of the quasiparticle inverse lifetime. A similar kink structure was found in

cobalt.

4.8 Summary

We have implemented the electron-magnon interaction in the GT approximation to

the self-energy within the many-body perturbation theory utilizing the full-potential
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linearized augmented-plane-wave (FLAPW) method. The GT approximation is com-

plementary to the GW approximation by explicitly accounting for spin-flip excita-

tions. The GW approximation is the self-energy approximation that results from the

Hedin equations if vertex corrections are neglected. We have formulated the GT self-

energy such that it can be combined with the GW approximation without the need

of double-counting corrections. For this, the self-energy of the Hedin equations is ex-

panded in the screened interaction. We have figured out that the GT diagrams start

with the third order in W in the self-energy expansion, while lower orders are consid-

ered in the Hartree and GW diagrams. This self-energy corresponds to a self-energy

diagram in which the correlated propagation of the electron-hole pairs with oppo-

site spins is described by a ladder diagram with three rungs. In order to take also

all higher-order interactions into account, which are important for the description of

the collective spin-wave excitations, we employ the ladder approximation. The lad-

der approximation accounts for the interaction between the electron-hole pairs from

the third to infinite order by employing the multiple-scattering T matrix, which is

the solution of a Bethe-Salpeter equation. We use this T matrix to formulate the GT

self-energy approximation so that it can be combined with the GW approximation

without the need of double-counting corrections.

The multiple-scattering T matrix describes single-particle and collective spin-

wave excitations on the same footing. The multiple-scattering T matrix is formulated

in a basis of maximally localized Wannier function [46, 47], which allows an efficient

truncation in real space. The evaluation of the GT self-energy requires to calculate

the convolution of the Green function and the T matrix in the frequency domain. To

this end, we have implemented two methods: the contour-integration method [265]

and the analytic continuation method [266, 267]. The contour-integration method

is known to be the most precise and computationally most demanding technique.

However, the contour-integration method applied to the GT approximation leads

to spiky self-energies due to k-point convergence issues, see Fig. 4.8. Compared to

that, the analytic-continuation method allows to efficiently calculate the self-energy.

For this, the self-energy is evaluated as a function of imaginary frequencies and an-

alytically continued to real frequencies at the end of the calculation. The analytic

continuation is performed by means of a Padé approximation, which is a representa-

tion of the self-energy in terms of a sum of effective poles. The analytic continuation

performed with a single Padé approximation to the self-energy might yield spurious

features in the self-energy in rare cases. To prevent these spurious features, we have
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refined the analytic-continuation method.

The GT self-energy contribution is added as a correction to the single-particle

energies of the starting point. This is done under the assumption that the starting

point accounts for many-body effects except for those of the GT self-energy. We have

applied the GT self-energy to the 3d bulk transition metals iron, cobalt, and nickel.

The self-consistently renormalized Green function with respect to the COHSEX self-

energy serves as starting point. Alternatively, we use the corrected LSDA Green

function as starting point, that is the LSDA Green function which is corrected for

its exchange splitting such that the acoustic magnon excitation energy vanishes in

the long-wavelength limit, see discussion on the starting-point dependence of the

spin-wave dispersions in Section 3.5.3. The starting-point dependence of the GT self-

energy, employing either the COHSEX Green function or the corrected LSDA Green

function, is found to be weak in these materials.

The application of the GT self-energy to the bulk elementary ferromagnets Fe, Co,

and Ni can have important effects. In particular, we have seen strong lifetime effects

for all materials for the majority hole states and for iron also for the minority electron

states. In some cases, the lifetime broadening leads to a complete loss of the quasi-

particle peaks. We have found that the effect of the self-energy on the electronic spec-

trum weakens in the series iron, cobalt, and nickel. We ascribe this weakening to the

increasing d-state occupation as the unoccupied d states are particularly important

for the electron-magnon interaction. The qualitative behavior of the GT self-energy

can be explained by density-of-states arguments for these materials. The characteris-

tics of ferromagnetic materials, i.e., the presence of majority and minority spin states

leads to the fact that the spin-flip of a majority spin is much more likely than that

of a minority spin. As a consequence, the T matrix that mediates spin-flip processes

exhibits a pronounced spin asymmetry. The spin asymmetry of the T matrix has a

number of consequences for the GT self-energy. First, the self-energy inherits the

spin asymmetry of the T matrix, i.e., the self-energy leads to a substantially different

renormalization of the majority and minority states. The reason is that the T matrix

couples opposite spin states. For example the renormalization of a majority state de-

pends on the minority states via spin excitations and vice versa. Second, the spin

asymmetry of the T matrix leads to a particle-hole asymmetric renormalization, i.e.,

the renormalization of particle and hole states is substantially different depending

on the considered spin state. While majority hole states typically experience a strong

renormalization, the effect for the corresponding electron states is weak. To the op-
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posite, the renormalization of the minority electrons is much more pronounced than

that of the minority holes in most cases. The momentum dependence of the GT self-

energy is found to be weak, an effect that we ascribe to the low excitation energies of

the magnons compared to typical electronic excitation energies.

We found that the electron-magnon interaction leads to the emergence of an ad-

ditional quasiparticle that is a coherently bound state of electron and magnon excita-

tions to which we refer as the magnaron state. The magnarons form a fairly flat band

in the Brillouin zone inheriting the weak momentum dependence of the self-energy.

As a consequence, the crossing of an electronic band with that of a magnaron results

in a mixing of these states. In iron, the mixed many-body states manifest themselves

as two peaks in the electronic spectral function. The mixing leads to a splitting of the

quasiparticle states that is clearly visible in the band structure. In cobalt and nickel,

in which the electron-magnon interaction is weaker than in iron, the mixing of elec-

tron and magnaron states leads to shoulder structures instead of additional peaks

in the spectral functions. In addition, we found that the electron-magnon interac-

tion can lead to anomalies in the quasiparticle dispersion. For example, we found

kink structures in the quasiparticle dispersion of free-electron-like bands appearing

in cobalt and nickel at binding energies larger than 200 meV. The implementation

of the GT self-energy opens up the possibility to study spin-dependent renormal-

ization effects of the electronic spectrum. In particular, the GT self-energy is able

to describe the spin-dependent lifetime broadening seen experimentally. Interest-

ingly, in the vicinity of the Fermi energy our results are in good qualitative agree-

ment with LDA+DMFT studies of the elementary ferromagnets [62–66] employing

the spin-polarized T-matrix fluctuation exchange approximation. This allows the

conclusion that the electron-magnon scattering is a very important scattering chan-

nel in this energy range for these materials. In the GT approximation, the coupling

of electrons to spin-flip excitations leads to the emergence of kink structures in the

quasiparticle dispersion, which can be attributed to the nonlocal treatment of the

collective spin-wave excitations and which, therefore, cannot be described within

DMFT. Thus, the GT self-energy can help in clarifying the origin of kink structures

seen experimentally.
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The central aim of this thesis has been the first-principles investigation of spin-wave

excitations and the electron-magnon scattering in elementary ferromagnets on the

basis of the many-body perturbation theory (MBPT). To study spin excitations, the

central quantity of interest is the dynamical magnetic response function that allows

to access the entire spin excitation spectrum, i.e., single-particle Stoner excitations

and collective spin-wave excitations, on the same footing. In the framework of the

GW approximation the magnetic response function is the solution of a Bethe-Salpeter

equation including a multiple-scattering T matrix, which describes the correlated

motion of the electron-hole pairs with opposite spins in the ladder approximation.

The Bethe-Salpeter equation is solved with the help of an auxiliary four-point mag-

netic response function. We have used a recently established computational scheme

within the full-potential linearized augmented-plane-wave method (FLAPW) em-

ploying a Wannier-function basis for the explicit representation of the four-point scat-

tering matrices [43, 166]. The contraction of the four-point magnetic response func-

tion yields the physically relevant two-point magnetic response function. A conve-

nient choice, though an approximation, for the Green function of the non-interacting

system is the local-spin-density approximation Green function calculated from the

Kohn-Sham wave functions and energies. For the description of collective spin ex-

citations the magnetic response function of the non-interacting system is renormal-

ized by solving the Bethe-Salpeter equation. Since spin-wave excitations are low

energy excitations, the screened interaction, which describes the interaction between

the electron-hole pairs, is approximated by its static limit. The correlated motion of

electron-hole pairs of opposite spins, in turn, leads to the formation of collective spin

excitations as well as a renormalization of the single-particle Stoner excitations. The

screened interaction W in the random-phase approximation is short-range in metal-
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lic systems. This motivates a formulation of the magnetic response function in a

basis of maximally localized Wannier functions, which allows an efficient truncation

of the four-point functions in real space. The short-range behavior of the screened

interaction is utilized by employing an on-site approximation, in which off-site con-

tributions of the interaction between electron-hole pairs are neglected.

The so-calculated magnetic response function leads to a gap error in the spin-

wave dispersion of collinear magnetic materials, i.e., the spin-wave excitation energy

does not vanish in the long-wavelength limit as it should according to the Goldstone

theorem. The Goldstone theorem states that the q ! 0 limit of the acoustic magnon

excitation energy must vanish in collinear magnetic systems as a consequence of

the spontaneously broken spin-rotation symmetry. We have suspected that part of

the gap error could be attributed to the choice of the Kohn-Sham Green function

for the treatment of the non-interacting system. As the magnetic response function

derives from the GW approximation with an additional static approximation for the

screened interaction, a consistent numerical realization must use the self-consistently

renormalized Green function with respect to that self-energy.

We have calculated the Green function for the elementary ferromagnets iron,

cobalt, and nickel from a self-consistent Coulomb hole and screened exchange (COH-

SEX) self-energy [71], which is the static limit of the GW approximation, and studied

their spin-wave dispersions. The self-consistent COHSEX calculation brings about

an overall reduction of the exchange splitting compared to a local-spin-density ap-

proximation (LSDA) or a generalized gradient approximation (GGA) in the parame-

terization of Perdew-Zunger [90] and Perdew, Burke, and Ernzerhof [91], often lead-

ing to a better agreement with experiment. We have found, indeed, that the use of

the properly renormalized Green function substantially reduces the gap error com-

pared to when the Kohn-Sham Green functions are employed. The remaining gap

error is attributed to approximations in the numerical scheme, e.g., the use of the

on-site approximation, the formulation in a Wannier basis, empty-state summations,

et cetera. In addition, we have introduced a correction scheme motivated by the one-

band Hubbard model that cures the fundamental inconsistency of using the Kohn-

Sham Green function. To this end, the exchange splitting of the Kohn-Sham solution

is adjusted such that the spin-wave excitation energy vanishes in accordance with the

Goldstone theorem. The resulting spin-wave dispersions as well as the magnetic mo-

ments and the exchange splittings of the corrected Kohn-Sham systems are closer to

the corresponding COHSEX results for the materials than to the original Kohn-Sham
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results. The correction scheme enables to efficiently calculate spin excitations that

respect the Ward identity of spin conservation within the many-body perturbation

theory.

In this work, we have developed and implemented a self-energy approximation

that describes the electron-magnon scattering. To this end, we have used the de-

scription of the spin excitations within the multiple-scattering T-matrix approach.

The self-energy is constructed such that it can be combined with the GW approxi-

mation without the need of a double-counting correction. The GW approximation

accounts for the interaction of electrons with charge fluctuations, known as plas-

mons, where the screened interaction W corresponds to the propagator of the plas-

mon excitations. In the GT approximation the multiple-scattering T matrix, which

describes the (collective) spin-excitation spectrum, can be seen as the propagator of

the magnon excitations. In order to combine the GW and the GT approximation one

has to avoid double-counting terms. We accomplish this by leaving out the first- and

second-order diagram of the GT approximation as these diagrams are already con-

tained in the Hartree term and the GW approximation. In fact, analyzing the Hedin

equations reveals that the leading order of GT-like diagrams is the third order in the

screened interaction.

We have calculated the GT self-energy contribution for iron, cobalt, and nickel

in combination with the self-consistent COHSEX Green function. Comparing these

results with calculations employing the corrected LSDA Green function as starting

point we have found generally a good agreement. For Fe, Co, and Ni the GT self-

energy gives rise to a particle-hole asymmetric renormalization meaning that either

hole or electron states are predominantly renormalized. In addition, the self-energy

exhibits a spin asymmetry, i.e., while in the majority spin channel the hole states are

more strongly renormalized than the electron states, it is the other way around in the

minority spin channel.

We have found that the renormalization due to the GT self-energy decreases in

the series Fe, Co, and Ni, an effect that we ascribe to the increase of the d-state

occupation. In iron the renormalization gives rise to a strong lifetime broadening

of majority holes and minority electrons, to the extent that the quasiparticle char-

acter is virtually lost in certain energy regions. We have found that the spin-flip

scattering in iron affects the majority electron lifetimes, though to a smaller degree

than observed experimentally [60]. For the minority electron states the renormal-

ization by the GT self-energy is considerably stronger, and the calculated lifetimes
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are in fairly good agreement with the experimentally observed values. In addition,

we found additional peaks in the electronic spectral function for both spin chan-

nels indicating the presence of an additional quasiparticle. An analysis by means

of the Brillouin-Wigner perturbation theory reveals that the additional quasiparticle

is a bound many-body state that is formed by a superposition of single-particle and

magnon excitations, to which we refer as a magnaron state. The magnaron state forms

a flat band inheriting the weak momentum dependence of the self-energy. We have

observed a strong coupling of electronic bands with the magnaron state, which is

accompanied by a strong lifetime broadening. In cobalt and nickel we have found

similar renormalization effects in the spectral function of the majority spin channel,

though less pronounced than in iron. Moreover, we have seen that the GT self-energy

yields kink structures in the majority quasiparticle band dispersions in cobalt and

nickel, a result that we attribute to the spatially extended nature of the spin-wave ex-

citation, requiring a k-dependent description of the self-energy. Hofmann et al. [59]

investigated a minority quasiparticle band in nickel by means of an angle-resolved

photoemission spectrocopy (ARPES) experiment. They observed a kink structure in

the band dispersion of the order of 30 meV at a binding energy of 250 � 300 meV. At

approximately the same binding energy we have found a kink-like renormalization,

but the renormalization is smaller than seen in the experiment. The contribution of

spin-flip scattering on electron states in cobalt and nickel is generally weak. How-

ever, the GT self-energy gives rise to a strong lifetime broadening of majority hole

states in cobalt and to a lesser degree in nickel. Our results are in good qualitative

agreement with LDA+DMFT studies [62–66] in the vicinity of the Fermi energy and

our calculated electron lifetimes for iron and nickel compare well with the spin-flip

contribution obtained from calculations based on diagrammatic techniques [67–70].

At the current stage the electron-magnon interaction in the GT approximation is

combined with the COHSEX self-energy, which is the static limit of the GW approxi-

mation. A promising next step is the extension to a GW+T approximation. A seam-

less combination of the GW and the GT self-energies would put us in the position

to make quantitative comparisons with high-resolution ARPES measurements. Fur-

thermore, the GT self-energy is calculated perturbatively at the moment, assuming

that the single-particle states of the self-consistent COHSEX calculations are good

approximations to the quasiparticle amplitudes. The investigation of the full self-

energy matrix of a combined GW+T approximation would open up the possibility to

study also very fine details of quasiparticle renormalizations measured experimen-
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tally. In order to enable the study of more complex crystal structures, a formula-

tion of the T matrix beyond the on-site approximation, which is currently employed

for the screened interaction, would be desirable. The investigation of the electron-

magnon scattering in the iron-based superconductors, in which the spin-fluctuations

are supposed to be the mediating bosons for the attractive interaction leading to the

superconductivity, is interesting in its own right. Moreover, the T-matrix approach

also allows to treat optical excitations. For this, the present implementation of the

electron-hole T matrix could be extended to excitonic excitations, which opens up

the possibility to calculate a self-energy in the flavor of a GT approximation that ac-

counts for electron-exciton scattering effects. However, typical excitonic excitation

energies are of the order of eVs and thus much larger than typical magnon excitation

energies. Consequently, empty-state summations are presumably more important

for the description of excitonic effects than for magnons. A systematic band conver-

gence is, however, problematic in the Wannier-function approach. As an alternative,

a formulation in terms of a two-particle Hamiltonian, which makes use of the basis

of Bloch functions could be used. Apart from the self-energy diagrams discussed so

far, there are other potentially important diagrams that are worth mentioning. The

leading order correction to the GW approximation is the second-order screened ex-

change (SOSEX) self-energy, which has been recently implemented and applied in a

G0W0+SOSEX scheme to molecular systems by Ren et al. [245]. A systematic treat-

ment of self-energy corrections beyond the GW approximation would require the

consideration of the SOSEX self-energy, in addition to higher-order exchange terms

and also self-energies of the GT form that account for the particle-particle scattering

channel.
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A. Padé Approximation

In the present thesis we deal with functions, e.g., the magnetic response function,

which contain poles corresponding to excitation energies of the system. Typically,

a power series expansion is not suitable to represent such a function. Superior to

this is an approximation that expands the function as a ratio of two power series

known as Padé approximation. If the degree of the polynomial of the denominator

is by one larger than that of the nominator the function has a characteristic 1/!

behavior for! 2 C as needed for, e.g., the magnetic response function. This kind of

rational function allows to represent a given pole structure. The SPEX code utilizes

the Thiele algorithm to obtain the Padé approximant [319]. The Thiele algorithm uses

the continued fraction representation of a rational function

f (!) =
1

c0 +
!�!0

c1 +
!�!1

c2 + . . .

. (A.0.1)

and determines the complex-valued parameters ci recursively. If the number of sam-

pling points is odd, additional constraints reflecting the properties of the actual func-

tion are needed. The Padé approximation can be written as a sum of poles

f (!) =
n

Â
⌫=1

a⌫
!� W⌫

, Re(!) > 0 (A.0.2)

with residues a⌫ 2 C and position of the poles W⌫ = !⌫ + iG⌫, where !⌫ 2 R and

G⌫ < 0 for positive real frequencies. For negative real frequencies the function f (!)
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is obtained by

f (!) =
n

Â
⌫=1

a⇤⌫
!� W⇤

⌫
, Re(!) < 0. (A.0.3)

A function represented by a Padé approximation has to be continuously differen-

tiable at! = 0. For this the residues and the their corresponding poles need to meet

two conditions. The first condition is f (!)|!=0 = f (�!)|!=0 ensuring the continu-

ity of the function itself. With Eqs. (A.0.2) and (A.0.3), this condition is

Im
n

Â
⌫=1

a⌫
W⌫

= 0. (A.0.4)

Similarly, for the continuity of the derivative one finds

Im
n

Â
⌫=1

a⌫
W2
⌫
= 0. (A.0.5)

The real part of the function that is represented by a Padé approximation has a char-

acteristic 1/! behavior. The imaginary part of such a function obtains a 1/!2 be-

havior. To this end, the imaginary part of the Padé approximation

Im f (!) =
n

Â
⌫=1

Im [(!� W⇤
⌫)a⌫]

(!� W⌫)(!� W⇤
⌫)

=
n

Â
⌫=1

G⌫Re(a⌫) + (!�!⌫)Im(a⌫)
(!� W⌫)(!� W⇤

⌫)
. (A.0.6)

leads to the condition

Im
n

Â
⌫=1

a⌫ = 0, (A.0.7)

which ensures the correct behavior of Im f (!) / 1/!2.

Integrating a Padé Approximant

The Padé approximant is used in the present work to evaluate different kinds of

frequency integrations. The pole representation of a function defined on the real

frequency axis! 2 R using the Padé approximation reads

f (!) =
n

Â
⌫=1

a⌫
!� W⌫

Q(!) +
n

Â
⌫=1

a⇤⌫
!� W⇤

⌫
Q(�!), (A.0.8)

with W⌫ = !⌫ + iG⌫ describing the pole position in the complex plane and a⌫ the

corresponding residue of the pole. In the following we describe two different kinds

of integrals which are of special interest: the Fourier transformation and the con-
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volution of two functions in the frequency domain. The Fourier transformation is

needed for the evaluation of the sum rules (3.3.29) and (3.3.31) of the magnetic re-

sponse function. The evaluation of the convolution of two functions in the frequency

domain is used for the evaluation of the GT self-energy.

Fourier Transformation

The Fourier transformation

F (⌧) =
1

2⇡

Z 1

�1
d! e�i!⌧ f (!) (A.0.9)

of a Padé approximant employing the special form of the pole representation (A.0.8)

splits into the two integrals, i.e.

F1,⌫(⌧) =
1

2⇡

Z 1

0
d! e�i!⌧ a⌫

!� W⌫

=
a⌫ e�iW⌫⌧

2⇡
[�2⇡ i Q (!⌫) sgn(!⌫⌧)Q(�G⌫⌧) + E1(�iW⌫⌧)] ,

(A.0.10)

and

F2,⌫(⌧) =
1

2⇡

Z 0

�1
d! e�i!⌧ a⇤⌫

!� W⇤
⌫

=
a⇤⌫ e�iW⇤

⌫⌧

2⇡
[2⇡ i Q (�!⌫) sgn(!⌫⌧)Q(G⌫⌧)� E1(�iW⇤

⌫⌧)] ,
(A.0.11)

where the exponential integral function is defined as

E1(z) =
Z 1

z
dt

e�t

t
, | arg(z)| < ⇡ . (A.0.12)

A detailed discussion on the exponential integral function can be found in [320].

The Fourier transformation is then obtained by the sum of the integrals (A.0.10) and

(A.0.11)

F (⌧) =
n

Â
⌫=1

F1,⌫(⌧) +F2,⌫(⌧). (A.0.13)

The evaluation of the magnetic moment and the spin fluctuations, cf. Eqs. (3.3.29) and

(3.3.31), involve the calculation of the limit ⌧ ! 0± of the Fourier transform (A.0.13).

In these cases, special care must be taken for the exponential integral function, re-

sulting in

F (⌧ ! 0+)�F (⌧ ! 0�) =
�i
2

n

Â
⌫=1

(a⌫ + a⇤⌫), (A.0.14)
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and

F (⌧ ! 0+) +F (⌧ ! 0�)

=
n

Â
⌫=1


i(a⌫ + a⇤⌫)

⇡
arctan

✓
!⌫
G⌫

◆
� a⌫ � a⇤⌫

2⇡
ln
⇣
!2
⌫ + G2

⌫

⌘�
. (A.0.15)

Convolution along the Real Frequency Axis

The evaluation of the GT self-energy (4.3.1) requires the calculation of the convo-

lution of the electronic Green function and the T matrix in the frequency domain.

To this end, the contour-integration method and the analytic-continuation method

have been implemented. Both methods make use of the Padé approximation. While

the contour-integration method makes use of a convolution along the real frequency

axis, the analytic-continuation method relies on the convolution along the imaginary

frequency axis. For the contour-integration method integrals of the form

C(!) =
Z 1

�1
d!0 1

!�!0 �✏+ i⌘sgn(✏)
f (!0). (A.0.16)

have to be solved. Here, ✏ denotes a single-particle energy relative to the Fermi level

and the function f (!) is represented by means of a Padé approximation. We solve

these integrals for each pole of the Padé approximation, i.e.

C(!) =
n

Â
⌫=1

C1,⌫(!) + C2,⌫(!), (A.0.17)

with

C1,⌫(!) =
Z 0

�1
d!0 1

!�!0 �✏+ i⌘sgn(✏)
a⇤⌫

!0 � W⇤
⌫

, (A.0.18)

and

C2,⌫(!) =
Z 1

0
d!0 1

!�!0 �✏+ i⌘sgn(✏)
a⌫

!0 � W⌫
. (A.0.19)

A partial fraction decomposition together with the standard integral

Z z2

z1

d!
1

!� z0
= [ln (|!� z0|) + i arg(!� z0)]

z2
z1

(A.0.20)
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allow to evaluate the integrals easily. In the case of ⌘ ! 0+ the results of the convo-

lutions are given by

C1,⌫(!) =
a⇤⌫

W⇤
⌫ �!+✏


ln (|✏�!|) + i⇡sgn(✏)Q(✏�!)

� 1
2

ln(!2
⌫ + G2

⌫) + i(⇡sgn(G⌫)� arg(�W⇤
⌫))

�
(A.0.21)

and

C2,⌫(!) =
a⌫

W⌫ �!+✏


� ln (|✏�!|) + i⇡sgn(✏)Q(!�✏)

+
1
2

ln(!2
⌫ + G2

⌫) + i arg(�W⌫)

�
. (A.0.22)

Convolution along the Imaginary Frequency Axis

The analytic-continuation method makes use of the convolution along the imaginary

frequency axis

C(z) =
Z ⌘+i1

⌘�i1
dz0

1
z � z0 �✏ f (z0) (A.0.23)

for the evaluation of the self-energy as a function of imaginary frequencies. We as-

sume for its imaginary frequency argument z = i! that ! � 0. The convolution

along the imaginary frequency axis can be evaluated following exactly the same steps

as in the case of the convolution along the real frequency axis, see previous section.

The result for the integration along the negative imaginary axis from ⌘� i1 to 0 is

given by

C1,⌫(i!) =
a⇤⌫

W⇤
⌫ � i!+✏


1
2

ln
⇣
✏2 +!2

⌘
+ i arg(i!�✏)

� 2⇡ iQ(�!⌫)Q(G⌫) + i⇡sgn(G⌫)� 1
2

ln(!2
⌫ + G2

⌫)� i arg(�W⇤
⌫)

�
. (A.0.24)

Performing the integration along the positive imaginary frequency axis from 0 to

⌘+ i1 yields

C2,⌫(i!) =
a⌫

W⌫ � i!+✏


� 1

2
ln
⇣
✏2 +!2

⌘
� i arg(i!�✏) + i⇡sgn(!)

� 2⇡ iQ(�✏)Q(!) + 2⇡ iQ(!⌫)Q(G⌫) +
1
2

ln(!2
⌫ + G2

⌫) + i arg(�W⌫)

�
. (A.0.25)
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B. Coulomb Hole and Screened Exchange

Self-Energy

The Coulomb hole and screened exchange (COHSEX) self-energy is the static limit

of the GW approximation

S↵(r, r0;!) =
i

2⇡

Z 1

�1
d!0 ei⌘!0

G↵(r, r0;!+!0)W(r, r0;!0), (B.0.1)

which can be formally rewritten in the contributions coming from the poles of the

Green function and the contribution of the (plasmon) poles of the screened interac-

tion. This kind of decomposition was first done by Hedin [71] and allows to derive

the COHSEX self-energy approximation. To this end, the Green function

G↵(r, r0;!) =
Z 1

�1
d!0 A↵(r, r0;!0)

!�!0 + i⌘sgn(!0)
. (B.0.2)

is written in terms of its spectral function

A↵(r, r0;!) =
BZ

Â
k

all

Â
m
'↵km(r)'

↵ ⇤
km(r

0)�(!�✏↵km). (B.0.3)

The screened interaction can also be written in terms of its spectral function. For this,

the frequency independent bare Coulomb interaction is separated from the remain-

der part

W(r, r0;!) = v(r, r0) + Wc(r, r0;!), (B.0.4)

which can be represented as

Wc(r, r0;!) =
Z 1

�1
d!0 D(r, r0;!0)

!�!0 + i⌘sgn(!0)
, (B.0.5)
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where D(r, r0;!) is the spectral function of the screened interaction. The spectral

function obeys the symmetry relation D(r, r0;!) = �D(r, r0;�!). The dynamical

screened exchange contribution

S̃↵SEX(r, r0;!) = �
BZ

Â
k

occ

Â
m
'↵km(r)'

↵ ⇤
km(r

0)W(r, r0;✏↵km �!) (B.0.6)

arise from the poles of the Green function. It takes into account exchange processes

via the dynamical screened interaction. The poles of the screened interaction leads

to the dynamical Coulomb hole part

S̃↵COH(r, r0;!) =
BZ

Â
k

all

Â
m
'↵km(r)'

↵ ⇤
km(r

0)
Z 1

0
d!0 D(r, r0;!0)

!�✏↵km �!0 + i⌘sgn(✏↵km)
. (B.0.7)

For states close to the Fermi energy the Coulomb hole has the physical interpretation

of the interaction of a quasiparticle with the induced potential due to the dynamical

screening. The Eqs. (B.0.6) and (B.0.7) are exact and their sum corresponds to the

GW approximation. Under the assumption that the most important contribution of

the spectral function A↵(r, r0;!) comes from the energy region in the vicinity of the

Fermi level! ' 0, the screened exchange self-energy can be approximated by

S↵SEX(r, r0;! = 0) = �
BZ

Â
k

occ

Â
m
'↵km(r)'

↵ ⇤
km(r

0)W(r, r0; 0). (B.0.8)

In this limit, the Coulomb hole contribution simplifies to a local and spin indepen-

dent potential

S↵COH(r, r0;! = 0) =
1
2
�(r � r0)Wc(r, r0; 0). (B.0.9)

The obtained self-energy approximation

S↵COHSEX(r, r0) = S↵COH(r, r0;! = 0) + S↵SEX(r, r0;! = 0) (B.0.10)

is a static self-energy approximation known as the COHSEX approximation. As the

COHSEX approximation is frequency independent, it corresponds to a Hermitian

self-energy operator.
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List of Abbreviations

ALDA adiabatic local-density approximation.

ARPES angle-resolved photoemission spectroscopy.

BLS Brillouin light scattering.

BZ Brillouin zone.

COH Coulomb hole.

COHSEX Coulomb hole and screened exchange.

CMOS complementary metal-oxide-semiconductor.

DFT density-functional theory.

dHvA de Haas-van Alphen.

DMFT dynamical mean-field theory.

DOS density of states.

FLAPW full-potential linearized augmented-plane-wave.

FLEX fluctuation exchange.

GGA generalized gradient approximation.

GMR giant magnetoresistance.

HDD hard disk drive.

INS inelastic neutron scattering.

IPS inverse photoemission spectroscopy.

IR interstitial region.
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List of Abbreviations

KS Kohn-Sham.

LDA local-density approximation.

LMTO linearized muffin-tin orbital.

LSDA local-spin-density approximation.

MBPT many-body perturbation theory.

MT muffin-tin.

PBE Perdew-Burke-Ernzerhof.

PZ Perdew-Zunger.

QSGW quasiparticle self-consistent GW.

RPA random-phase approximation.

SEX screened exchange.

SOSEX second-order screened exchange.

SPTF spin-polarized T-matrix fluctuation exchange.

SX-ARPES soft x-ray angle-resolved photoemission spectroscopy.

TAS triple-axis spectroscopy.

TDDFT time-dependent density-functional theory.

TMR tunneling magnetoresistance.

TR-2PPE time-resolved two-photon photoemission.

xc exchange correlation.

XPS x-ray photoemission spectroscopy.
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