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Universitätsprofessor Dr. Peter Heinz Dederichs

Tag der mündlichen Prüfung: 24.05.2005
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Abstract

Half-metallic ferromagnets, discovered in 1983 by de Groot and collaborators,
have given a strong boost to the research in the field of spintronics. The main
characteristic of these materials is a different behavior in the two spin bands:
while the majority spin band shows a typical metallic behavior, the minority
spin band is semiconducting. Thus, the spin polarization at the Fermi level
is 100%, maximizing the efficiency of magnetoelectronic devices.

In this thesis we address the half-metallicity of materials from the the
electronic structure point of view. We focus on the structural, electronic,
and magnetic aspects of the half-metallic Heusler alloys and the zincblende
compounds. Among the Heusler alloys we focus particularly on NiMnSb. The
investigations are based on the Density Functional Theory (DFT), the most
successful ab-initio theory for real solid state materials. We investigate the
bulk properties, the properties of selected low index surfaces and for the case
of NiMnSb/InP also a junction with a semiconductor. The importance of
the spin-orbit interaction in reducing the polarization at the Fermi energy is
considered. The calculations are carried out with the full-potential linearized
plane-wave method (FLAPW), one of the most precise density functional
methods for multicomponent materials, open structures and surfaces.

A particular effort is made to address the finite temperature properties of
half-metals. This is a challenge, as the local-density approximation and the
generalized gradient approximation to DFT are theories which address the
systems at zero temperature. To bridge the temperature gap, we calculate
the interatomic exchange parameters from first principles, using the frozen
magnon calculations which employ the spin spiral formalism as implemented
in the FLEUR code. These parameters are then used in a Heisenberg model
which describes the system at finite temperatures. Besides applying the ran-
dom phase and the mean-field approximation, we seek the finite temperature
properties by Monte Carlo simulations. To describe the system NiMnSb
properly, we extend the Heisenberg model to include the longitudinal fluctu-
ations in addition to the transverse ones. This leads to the surprising result
that, although the magnetic moment of Ni is lost at a temperature around
1/10 of the Curie point, the half-metallicity is preserved. However, the width
of the half-metallic gap is reduced and the Fermi level is slightly shifted.

Finally, we present an analysis of possible applications of half-metals in
giant magnetoresistance (GMR) and tunneling magnetoresistance (TMR)
junctions, concluding that in the TMR case interface states can completely
compensate the half-metallic property rendering it useless. A possible ap-
plication of zincblende half-metals in ideal spin-valves, found to be free of
interface states, is described.
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Chapter 1

Introduction

In recent years, the field of magnetoelectronics (also referred to as spin-
tronics) has become one of the hot topics of solid state physics. Initiated
by the discovery of giant magnetoresistance in 1988 by Grünberg and Fert,
spintronics aims at exploiting the electronic spin degree of freedom for the
fabrication of better nanoelectronic devices. Adding the spin degree of free-
dom to the conventional electronic devices might have several advantages,
like non-volatility, increased data processing speed, decreased electric power
consumption and increased integration densities [1].

Half-metallic ferromagnets, first discovered in 1983 by de Groot and col-
laborators [2], are materials which have given further impetus to the research
in the field of spintronics. Due to their specific electronic structure, these
materials are very promising candidates for applications in novel spintron-
ics devices [3]. Their main characteristic is a different behavior in the two
spin bands. Namely, while the majority spin band shows the typical metallic
behavior, the minority spin band is semiconducting. Thus, the spin polar-
ization at the Fermi level is 100%, which maximizes the efficiency of the
magnetoelectronic devices [4].

Heusler alloys [5] have attracted during the last century a great interest
due to the possibility to study, in the same family of alloys, a series of inter-
esting diverse magnetic phenomena like itinerant and localized magnetism,
antiferromagnetism, helimagnetism, Pauli paramagnetism or heavy-fermionic
behavior [6, 7, 8, 9]. The first Heusler alloys studied were crystallizing in the
L21 structure which consists of 4 fcc sublattices. Afterwards, it was discov-
ered that some of the alloys adopt the C1b structure, in which one of the
four sublattices remains unoccupied. The latter compounds are often called
half- or semi-Heusler alloys, while the L21 compounds are referred to as full-
Heusler alloys. In their pioneering work, de Groot and collaborators [2] dis-
covered, using first-principles electronic structure calculations, that one of the
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half-Heusler compounds, NiMnSb, is a half-metallic ferromagnet. Since then,
various investigations [10, 11, 12, 13] have shown that the half-metallicity
also characterizes a number of other half- and full-Heusler alloys. Due to
their relatively high Curie temperature, these alloys are good candidates for
technical applications like spin-injection devices [14], spin-filters [15], tunnel
junctions [16], or giant magnetoresistance devices [17].

New investigations also find half-metallic behavior in some oxides (e.g.
CrO2 and Fe3O4) [18], manganites (e.g. La0.7Sr0.3MnO3) [18], double per-
ovskites (e.g. Sr2FeReO6) [19], pyrites (e.g. CoS2) [20], transition-metal chalco-
genides (e.g. CrAs) and pnictides (e.g. CrSe) in zinc-blende or wurtzite struc-
ture [21, 22, 23, 24, 25], and diluted magnetic semiconductors (e.g. Mn doped
Si or GaAs) [26, 27].

A proper understanding of the physics of these materials and mechanisms
which govern the formation of the gap in the minority spin band is necessary
in order to decide which ones of all the candidates would be the most suitable
choice in applications and many aspects are being investigated, theoretically
and experimentally. As an example, there are numerous investigations of
the properties of NiMnSb which developed to a “model system” in this field;
experiments on single crystals of NiMnSb by infrared absorption [28] and
spin-polarized positron-annihilation [29] gave a spin-polarization of ∼100%
at the Fermi level. Larson et al. [30] showed that the actual structure of
NiMnSb is the most stable with respect to an interchange of the atoms. Or-
gassa et al. [31] showed that a few percent of disorder induce states within the
gap but do not destroy the half-metallicity. Unfortunately, the thin films of
NiMnSb were experimentally found not to be half-metallic [18, 32, 33, 34, 35],
and a maximum polarization value obtained by Soulen et al. [18] was 58%.
Ristoiu et al. [36] have studied the surfaces of NiMnSb experimentally and
showed that the (001) surface terminated in a MnSb layer presents a spin-
polarization of about 67±9% at room temperature. From ab-initio calcula-
tions, surface states in the gap of the minority spin band were found for all
the possible (001) and (111) terminations of this alloy [37, 38, 39]. In the
case of interfaces of NiMnSb with semiconductors, theoretical investigations
show that, in certain geometries of the interface, half-metallicity can be pre-
served [40] while in some other geometries although the half-metallicity is
lost, the spin-polarization can remain very high [41].

Though the Curie temperatures of Heusler alloys are high, for practi-
cal applications it is important that the half-metallic property remains also
at temperatures significantly close to room temperature. Thus it is very
important to know how half-metallic materials behave at finite tempera-
tures, i.e. how does the spin polarization at the Fermi level change as a
function of temperature. For instance, there is experimental evidence that



3

the half-metallicity of NiMnSb might be lost at temperatures much lower
than the Curie temperature [42, 43]. There are few theoretical works de-
scribing the processes which take place in half-metals at finite tempera-
tures [44, 45, 46]. They rely on the determination of the exchange inter-
action parameters in these materials from ab-initio calculations, and then
using these in the Heisenberg model to obtain the Curie point. However,
the behavior at nonzero temperatures, but below the Curie point, remains
an open and nontrivial problem. In particular, questions concerning the
half-metallic gap at T > 0 have to be explored.

In this thesis we address the half-metallicity of materials from the elec-
tronic structure point of view. We focus on the structural, electronic, and
magnetic aspects of the half-metallic Heusler alloys and the zinc-blende com-
pounds. Among the Heusler alloys we focus particularly on NiMnSb. The
investigations are based on the Density Functional Theory (DFT), the most
successful ab-initio theory for real solid state materials. We investigate the
bulk properties, the properties of selected low index surfaces and for the case
of NiMnSb/InP also a junction with a semiconductor. The importance of
the spin-orbit interaction in reducing the polarization at the Fermi energy
is considered. The calculations are carried out with the full-potential lin-
earized augmented plane-wave method (FLAPW), one of the most precise
density functional methods for multicomponent materials, open structures
and surfaces.

A particular effort is made to address the finite temperature properties
of half-metals. This is a challenge as the local-density approximation (LDA)
and the generalized gradient approximation (GGA) to the DFT are theories
which address the systems at zero temperature. To bridge the temperature
gap we calculated from first principles the interatomic exchange parameters
and used these in a Heisenberg model, which is employed to describe the sys-
tem at finite temperatures. Besides applying the mean-field approximation
and the random phase approximation we seek the finite temperature proper-
ties by Monte Carlo simulations. To describe the system NiMnSb properly,
we had to transcend the Heisenberg model, including longitudinal fluctua-
tions in addition to transverse fluctuations. This leads to the result that the
magnetic moment of Ni vanishes at very low temperatures. Surprisingly, the
half-metallic gap survives the loss of the Ni moment, though it shifts with
respect to the Fermi level and its width is reduced. In order to calculate
the exchange parameters using a method with translational symmetry we
followed the suggestions of Halilov and co-workers [47] and extended them
to multicomponent systems, making use of frozen magnon calculations em-
ploying the spin spiral formalism as implemented in the FLEUR code.

The thesis is structured as follows. The idea and formulation of DFT are
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presented in Chapter 2. The Full Potential Linearized Augmented Plane-
wave (FLAPW) method (as implemented in the FLEUR code) is described in
Chapter 3. Special attention is given to the description of non-collinear mag-
netism within the FLAPW method in Chapter 4. In Chapter 5 we consider
the Stoner and Heisenberg models of magnetism in solids. We also describe
a way to use the ab-initio calculations and determine, from the differences
in total energies of different magnetic configurations, the parameters used in
the Heisenberg model for the description of magnetic interactions. Analyzing
the ab-initio results, using the group-theory and simple models, we explain
in Chapter 6 the origin of the gap in the half- and full-Heusler alloys and
in the half-metallic zinc-blende compounds. Chapter 7 deals with the pro-
cesses that destroy the half-metallic property, even at low temperatures. As
a model system, NiMnSb is investigated in more detail. The discussion in
Chapter 8 focuses on the behavior of half-metallic systems at finite temper-
atures. Finally, in Chapter 9, a possible application of half-metals in ideal
spin-valves is described.



Chapter 2

Density Functional Theory

Calculating the magnetic properties and the total energy of solids is not a
trivial task, given the fact that the atomic nuclei and the electrons constitute
a complex many-body problem. Therefore, all theories that deal with these
calculations start by adopting the Born-Oppenheimer approximation, which
simply neglects the movement of the atomic nuclei and considers them as
point charges at fixed positions. This is a pretty good assumption, since the
electrons are much lighter than the nuclei and thus move much faster. One
can now focus solely on the electrons, which in itself is a formidable problem.
The electrons interact with the positive atomic nuclei and with each other
via Coulomb forces. Although the former interaction is by no means simple
it can be treated, whereas the latter interaction is impossible to calculate
and one must resort to approximations.

Attempts to estimate the electron-electron interaction in solids and cal-
culate the electronic dispersion or the total energy of different systems date
back to the days of the Thomas-Fermi model [48, 49], the Hartree approxi-
mation and to the X-α method of Slater [50]. The extension of these ideas
which brought a revolution in the parameter-free ab-initio description of
complex electronic structure is known as Density Functional Theory (DFT)
and was established by Hohenberg and Kohn [51] and Kohn and Sham [52].
This has made it possible to calculate the total energy of solids, using the
electron density, n(r), as the key variable (n(r)=n↑(r)+n↓(r), where n↑(r) is
the spin up electron density and n↓(r) the spin down electron density). For
magnetic systems one has also to consider the magnetization density, m(r),
with m(r)=n↑(r)-n↓(r). In this chapter the Density Functional Theory will
be described in more detail.

5
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2.1 The Hohenberg-Kohn theorem

The basic ideas of DFT will be presented here by considering a non-magnetic
system with spin degeneracy, while the spin polarized case will be discussed
later. The DFT is based on two theorems.

Theorem 1 For a given external potential v, the total energy of a system is
a unique functional of the ground state electron density.

To prove this we consider a Hamiltonian, H=T+V+W, where T repre-
sents the kinetic energy of the system, V the interaction of the electrons
with an external potential (including the potential coming from the atomic
nuclei in the solid) and W the electron-electron interaction. The solution
to this Hamiltonian results in a ground state many body wave function
Ψ(r1, r2, ....rN) (for N electrons), and we have

HΨ = E0Ψ. (2.1)

The electron density can be calculated from

n(r) = 〈Ψ |
N
∑

i=1

δ(r − ri) | Ψ〉, (2.2)

and the interaction V is written as V=
∫

n(r)v(r)d3r, where v(r) is the exter-
nal potential. What follows is the proof that two different external potentials
v(r) and v′(r) must give rise to different ground state electron densities. For
a system with potential v′(r) we have

H ′Ψ′ = E ′
0Ψ

′. (2.3)

From the variational principle it follows that

E0 = 〈Ψ | H | Ψ〉 < 〈Ψ′ | H | Ψ′〉. (2.4)

By adding and subtracting v′(r) on the rhs. of Eqn. 2.4 we obtain

〈Ψ′ | H | Ψ′〉 = 〈Ψ′ | H ′ + V − V ′ | Ψ′〉 (2.5)

= E ′
0 +

∫

n′(r)(v(r) − v′(r))d3r.

Combining the expressions in Eqns. 2.4 and 2.6 gives

E0 < E ′
0 +

∫

n′(r)(v(r) − v′(r))d3r. (2.6)
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A similar argument, starting from the expression

E ′
0 = 〈Ψ′ | H ′ | Ψ′〉 < 〈Ψ | H ′ | Ψ〉, (2.7)

results in

E ′
0 < E0 +

∫

n(r)(v′(r) − v(r))d3r. (2.8)

Adding Eqn. 2.6 and 2.8 and assuming n′(r) = n(r) one obtains

E0 + E ′
0 < E ′

0 + E0, (2.9)

which is clearly wrong. Hence n′(r) 6= n(r) and we conclude that two differ-
ent potentials, v(r) and v′(r) give rise to different densities n(r) and n′(r).
Therefore, knowledge of the electron density, n(r), implies that it was cal-
culated from a Hamiltonian with a specified external potential v(r). As
the kinetic energy, T, and electron-electron interactions, W, are known and
specified one concludes that knowledge of the ground state electron density
determines the entire Hamiltonian and hence the ground state energy, which
proves Theorem 1. One can thus express a functional relationship between
the ground state energy and the corresponding electron density as

E[n(r)] = T [n(r)] + V [n(r)] +W [n(r)]. (2.10)

The second important theorem of DFT is

Theorem 2 The exact ground state density minimizes the energy functional
E[n(r)].

To prove Theorem 2 one starts from Theorem 1 and for a given external
potential v0(r) writes

Ev0
[n(r)] = 〈Ψ[n(r)] | T +W + V0 | Ψ[n(r)]〉, (2.11)

where the subscript v0 indicates that this is the energy functional for a system
with external potential v0(r). Since the ground state density specifies the
Hamiltonian, it also specifies the wave function (of the ground state and of
excited states) and hence the notation Ψ[n(r)]. If the ground state electron
density is denoted by n0(r), the ground state can be expressed as Ψ[n0(r)].
From the variational principle one again obtains

〈Ψ[n0(r)] | T +W +V0 | Ψ[n0(r)]〉 < 〈Ψ[n(r)] | T +W+V0 | Ψ[n(r)]〉, (2.12)

which can also be expressed as

Ev0
[n0(r)] < Ev0

[n(r)], (2.13)
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i.e., the ground state density minimizes the energy functional E[n(r)], which
is what Theorem 2 states. If one would now have an explicit form for E[n(r)]
he could go ahead and minimize it with respect to the electron density and
in this way calculate the ground state energy. Unfortunately, due to the
complexity provided by the electron-electron interactions, approximations
are necessary to obtain an explicit expression for E[n(r)].

DFT for spin polarized systems

The reasoning applied to the non-magnetic systems can be extended to the
spin polarized ones, and it is shown that the ground state energy is a unique
functional of the electron and magnetization density (n(r) and m(r)). The
proof of this is quite similar to the proof outlined above. One starts by modi-
fying the Hamiltonian to include an external magnetic field, B(r), so that the
Hamiltonian becomes H=T+W+U, where U=

∫

v(r)n(r) − B(r) · m(r) d3r.
Based on the variational principle, similar to the discussion around Eqns. 2.4-
2.6, one arrives at

E0 < E ′
0 +

∫

n′(r)(v(r) − v′(r))d3r −
∫

m′(r)(B(r) − B′(r))d3r (2.14)

and

E ′
0 < E0 +

∫

n(r)(v′(r) − v(r))d3r −
∫

m(r)(B′(r) − B(r))d3r. (2.15)

Assuming that n(r) = n′(r) and m(r) = m′(r), and adding Eqns. 2.14 and
2.15 the same absurd result as in the discussion of spin degenerate systems,
i.e. Eqn. 2.9 follows, and one must draw the conclusion that n(r) 6= n′(r)
and m(r) 6= m′(r). Hence, for magnetic systems the ground state energy is
a unique functional of the electron density and the magnetization density.

2.2 The Kohn-Sham equations

How do we use DFT now to describe a solid? One starts with a simple non-
interacting electron system where the part of the Hamiltonian describing
electron-electron interactions, W, is absent. In this case the electrons which
move in the field of an external potential which, for reasons that will be
obvious below, will be called ”effective” potential Veff , are solutions to a
one-electron Schrödinger equation,

[
−∇2

2
+ Veff ]ψi = εiψi. (2.16)
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There is an infinity of solutions to this equation and to specify a special
solution the subscript i is introduced. From Eqn. 2.16 one can calculate an
electron density from the lowest lying one-particle (op) states. If there are
N electron states which are solutions to Eqn. 2.16 one simply calculates the
one-particle (a label introduced to show that there are no electron-electron
interactions considered) electron density from

nop(r) =

N/2
∑

i=1

2 | ψi(r) |2, (2.17)

where the factor 2 comes from spin degeneracy. In this case the energy
functional which describes the total energy of the N electrons may be written
as,

Eop[nop(r)] ≡ Top[nop] + Veff [nop] (2.18)

=

N/2
∑

i=1

〈ψi(r) |
−∇2

2
| ψi(r)〉 +

∫

nop(r)Veff(r)d
3r,

and the electron density which minimizes this functional is obtained from
the requirement that the energy functional is stationary for small variations
of the electron density around the ground state density. This can be written
as

0 = δEop = Eop[nop(r) + δnop(r)] − Eop[nop(r)], (2.19)

which may also be written as

0 = δTop[nop] +

∫

δn(r)Veff(r)d
3r. (2.20)

Carrying out the minimization in Eqn. 2.20 leads to Eqn. 2.16. Thus, the
independent particles which are the solution to Eqn. 2.16 give rise to a den-
sity which minimizes the total energy expression of independent particles in
Eqn. 2.19. The reason for introducing Eqns. 2.16 to 2.20 is mainly that they
can be solved, at least approximately, to within a desired accuracy. More
important, however, is the fact that they can, via the Kohn-Sham approach,
be used to actually calculate the ground state energy of a ’real’ interacting
electron system. The basic principle of the Kohn-Sham approach is now to
assume that one can find an effective potential, Veff , so that nop(r) = n(r)
where n(r) is the electron density of the fully interacting system. Since we
know that the total energy of a system is uniquely determined by the elec-
tron density, it seems to be an efficient route to obtain the correct electron
density from a one-electron like problem.
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The question now is how to determine Veff , so that nop(r) becomes equal
to n(r). To do this one rewrites the energy functional in Eqn. 2.10 as

E[n(r)] = Top[n(r)] +

∫

n(r)v(r)d3r (2.21)

+
1

2

∫ ∫

e2
n(r) · n(r′)

| r − r′ | d
3rd3r′ + Exc[n(r)]

(since it is required that nop(r) should be equal to n(r) in the expression
above, for simplicity, the subscript op on the electron density of the right hand
side was skipped). In Eqn. 2.21 the one-particle kinetic energy functional
instead of the true kinetic energy functional of Eqn. 2.10 was introduced,
as well as the Hartree electrostatic interaction instead of the true electron-
electron interaction. Hence in order to make Eqn. 2.21 equal to Eqn. 2.10 one
must introduce a term that corrects for these replacements, and this is what
the exchange and correlation energy, Exc[n(r)], does. Since the first three
terms on the right hand side of eqn.2.21 are possible to calculate numerically,
in this way the problem of the complexity of the fully interacting system is
mapped into the problem of finding the exchange and correlation functional.
So far it has been impossible to find the exact exchange and correlation
functional so that Eqn. 2.21 holds for all densities and all systems. However,
for a uniform electron gas one can calculate Exc[n(r)]1 for all values of the
electron density and parameterized forms of Exc[n(r)] as a function of n(r)
are available. The local density approximation (LDA) assumes that these
parameterizations work even in cases where the electron gas is not uniform,
but varies in space, as it does in a solid, surface or interface. In the frame of
this approximation, the expression

Exc[n(r)] =

∫

εxc[n(r)]n(r)d3r, (2.22)

for the exchange-correlation energy is introduced, where εxc[n(r)] is named
the exchange-correlation energy density. In a parametrized form its depen-
dence on n(r) is relatively simple and may, for example, be found in Ref. [56].
Armed with an (approximate) expression for the ground state energy func-
tional and in analogy with Eqns. 2.19 and 2.20 the ground state density can be
determined from this functional by requiring that the functional (Eqn. 2.21)

1This can be done in the high electron density limit [53] and in the low electron density
limit [54]. Interpolation between these two limits gave rise to parametrized forms of
the exchange and correlation functional of a uniform electron gas for all values of the
density [54]. However, this interpolation is in modern electronic structure calculations
replaced by approaches which are based on quantum Monte-Carlo simulations for the
intermediate values of the electron gas [55].
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is stationary for small variations of the electron density around the ground
state density. As a result, an expression which is quite similar to Eqn. 2.20
follows:

0 = δTop[n]+

∫

δn(r)

[

v(r) +

∫

e2
n(r′)

| r − r′ |d
3r′ +

∂(εxc[n(r)]n(r))

∂n(r)

]

. (2.23)

The comparison of Eqns. 2.20 and 2.23 identifies the effective potential which
(within the approximations and assumptions introduced) ensures that nop(r) =
n(r), as

Veff(r) = v(r) +

∫

e2
n(r′)

| r − r′ |d
3r′ + µxc(n(r)), (2.24)

where

µxc(n(r)) =
δ(Exc[n(r)]

δn(r)
= εxc[n(r)] + n(r)

∂(εxc[n(r)])

∂n(r)
. (2.25)

Eqn. 2.16 should be solved now with the effective potential specified by
Eqn. 2.24. Since the effective potential to be used in Eqn. 2.16 depends
on the electron density, the property that should be calculated, one has
to perform a self-consistent calculation where an initial electron density is
more or less guessed and an effective potential is calculated from Eqn. 2.24.
This potential is then used to solve Eqn. 2.16 and a new electron density is
calculated from Eqn. 2.17, which is then put back into Eqn. 2.24. This pro-
cedure is repeated until convergence is obtained, i.e. until the density does
not change appreciably with successive iterations2. Once a self consistent
electron density has been found one can calculate the ground state energy of
the Kohn-Sham (LDA) energy functional (via Eqn. 2.21) and hence one of
the main goals in electronic structure calculations has been achieved.

Kohn-Sham equations for spin-polarized systems

At the end of the previous section it was shown that for magnetic systems
the ground state energy may be written as a unique functional of the electron
density and of the magnetization density. An alternative way of expressing
this is to state that there is an energy functional which depends both on the
majority and the minority spin density (since n(r) = n↑(r)+n↓(r) andm(r) =

2Normally one mixes the electron density which is the output of Eqn. 2.17 with the
electron density which is in input for that particular loop in the self-consistency iterational
procedure before one takes this mixed density and puts it in Eqn. 2.24. The whole proce-
dure of mixing is quite complex where many suggestions of how to achieve self consistency
with as few iterations as possible have been suggested [57, 58].
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n↑(r) − n↓(r))3 and the energy functional can be written as E[n↑(r), n↓(r)].
Following arguments similar to the ones around Eqn. 2.21, one obtains a
Kohn-Sham scheme for spin-polarized systems through

E[n↑(r), n↓(r)] = Top[n
↑(r), n↓(r)] +

∫

n(r)v(r)d3r (2.26)

+
1

2

∫ ∫

e2
n(r) · n(r′)

| r − r′ | d3rd3r′ + Exc[n
↑(r), n↓(r)].

In a real solid the preference for occupying one spin channel (to some degree)
more than the other is traditionally explained as due to the exchange inter-
action and the driving force for it is the electron-electron interaction in the
Hamiltonian. Hence in the spin-polarized Kohn-Sham scheme this necessar-
ily means that the exchange and correlation potential, which is supposed to
absorb all complex electron-electron interactions, must depend both on the
charge and the spin (magnetization) density. Turning again to studies on the
uniform electron density is useful and parameterizations for Exc[n

↑(r), n↓(r)],
as a function of n↑(r) and n↓(r), have been made. Proceeding analogously to
the discussion around 2.16 and 2.17, one analyzes a one-particle Hamiltonian
with spin up (down) effective potentials,

[
−∇2

2
+ V

↑(↓)
eff ]ψ

↑(↓)
i = ε

↑(↓)
i ψ

↑(↓)
i , (2.27)

where the electron density for electrons with a given spin is obtained from

n↑(↓)
op (r) =

∑

i=1

| ψ↑(↓)
i (r) |2 . (2.28)

Repeating the discussion which led to Eqn. 2.24, with the only modification
that one now requires the energy functional to be stationary with regard to
both the spin up and the spin down density, leads to effective potentials which
are different for the two spin directions due to differences in the exchange
and correlation potential,

V
↑(↓)
eff (r) = v(r) +

∫

e2
n(r′)

| r − r′ |d
3r′ + µ↑(↓)

xc (n↑(r), n↓(r)), (2.29)

where the exchange-correlation potential is defined similar to Eqn. 2.25 as

µ↑(↓)
xc (n↑(r), n↓(r)) =

δExc[n
↑(r), n↓(r)]

δn↑(↓)(r)
. (2.30)

3This approach, however, simplifies the situation somewhat since the magnetization
density is a scalar property with both magnitude and spin. In this analysis it is assumed
that the magnetization is pointing only in one direction, the z-direction, of the system.
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Hence, the simplest forms of spin polarized calculations treat the spin up and
spin down electrons separately and for every iteration in the self consistent
loop one solves a Kohn-Sham equation for both spin directions. The spin
up and spin down densities are then calculated by occupying the N lowest
(spin up or spin down) eigenvalues of the separate two Kohn-Sham equations.
Since for a given V ↑

eff(r) which may be different from V ↓
eff(r) there may be

more spin up states, ε↑i than spin down states, ε↓i , which have an energy
lower than the highest occupied state (the Fermi level, EF ) it is clear how
spin polarization might occur. With a self consistent spin and magnetization
density the magnetic moment is calculated as

∫

m(r)d3r (in Bohr magneton
units) and the total energy may be calculated from Eqn. 2.26.

2.2.1 Solving the Kohn-Sham equations in systems with

translational symmetry

In the procedure of solving the Kohn-Sham equations in systems with trans-
lational invariance, several simplifications can be used due to this symme-
try [59]. The discussion here will concern the bulk calculations, but the
conclusions can also be applied to the lower dimensional systems, like thin
films or nanowires, in the directions in which the translational symmetry is
preserved.

First of all one normally assumes in a bulk material that the potential
which enters Eqn. 2.27 is periodic, i.e. V

↑(↓)
eff (r) = V

↑(↓)
eff (r + R), where R

is a translation vector (a Bravais lattice vector) of the solid. This periodic
boundary condition leads to Bloch’s theorem [59] which states that as an
effect of the periodicity of the bulk material the one-electron wave function
must obey the condition

ψ
↑(↓)
i,k (r + R) = eik·Rψ

↑(↓)
i,k (r), (2.31)

where k is a vector of reciprocal space 4. Due to the translation symmetry
one has only to consider k-vectors which lie inside the first Brillouin zone5

when looking for solutions to Eqns. 2.27-2.29 [59]. In addition one can solve
the Eqns. 2.27-2.29 for each k-vector being separate and independent of the
others. However, the dependence of the one-electron wave function on k
makes the calculation of the one-electron density somewhat more complex

4Reciprocal space is spanned by the vectors Gi, defined as Gi ·Rj = 2πδij , where V is
the volume of the primitive cell of the Bravais lattice.

5Moreover, when the system under consideration additionally possesses a point group
symmetry, only the irreducible wedge of the first Brillouin zone (determined by the sym-
metry) has to be considered.
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since a sum over all possible k-vectors has to be included, and Eqn. 2.28 is
in a crystal replaced by

n↑(↓)
op (r) =

∑

i

∑

k

| ψ↑(↓)
i,k (r) |2 . (2.32)

Similarly, in the calculation of the total energy, Eqn. 2.26, one needs to
calculate the sum of Kohn-Sham eigenvalues εi (Eqn. 2.16),

Eeig =
∑

i

∑

k

εi,k, (2.33)

since Top = Eeig −
∫

veff (r)n(r)d3r. In principle, all k-vectors inside the
first Brillouin zone (BZ) should be considered in the sums in Eqns. 2.32 and
2.33, but since this number is enormous one would like to replace the sum
with an integral. However, if one does not have an analytic dependence of
the Kohn-Sham eigenvalues on k, a way to approximate Eqn. 2.33 must be
found. In order to do this it is useful to introduce the concept of density of
states (DOS), which can be calculated from

D(E) =
∑

i

1

8π3

∫

BZ

δ(E − εik)d3k. (2.34)

With this definition of the DOS one can calculate the eigenvalue sum from

Eeig =

∫ EF

−∞

ED(E)dE. (2.35)

The expressions 2.34 and 2.35 can be combined into

Eeig =
∑

i

∫ ∞

−∞

Ef(E)
1

8π3

∫

BZ

δ(E − εik)d
3kdE, (2.36)

where f(E) is a step function which attains the value one below the Fermi
energy and zero above. Finally, the Eq.2.36 is solved on a k-points mesh,
distributed as to fulfill the symmetry of the space-group. The integral over
the Brillouin zone can then be calculated as a weighted sum over the bands,
i, and the discrete set of sampled k-points, kj, with weight functions, wji.
Several methods can be used for interpolation of the eigenvalues between the
k-points of the sample, like the linear tetrahedron method [60], the modified
tetrahedron method [61], or the Gaussian broadening method [62].
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2.2.2 Andersen’s Force Theorem

It is quite often that one needs to calculate the difference in total energies
between an initial and a slightly perturbed state. Andersen’s force theorem
claims that when the perturbation of the densities n(r), m(r) is small, the
difference can be calculated as a difference in the sums of the eigenvalues of
the two states (Eqn. 2.33). This can be shown as follows. The total energy
can be written as

E =

∫ EF

−∞

ED(E)dE − Er, (2.37)

where D(E) is the density of states and the first term on the right hand side
(called the band term) stands for the eigenvalues sum, Eeig (Eqn. 2.35). The
term Er includes all the other contributions to the total energy and can be
easily explicitly obtained from Eqn. 2.26 with Top = Eeig −

∫

veff(r)n(r)d3r.
The perturbation will cause some changes in the system and we assume these
changes to be parametrized by a set of quantities {Xi}. The total energy is
then a function of these parameters and the aim is to calculate

δE =
∑

i

δE

δXi
δXi. (2.38)

Consider now a perturbation specified by a set of parameters {∆Xi}. The
system can be led to self-consistency in two steps. First, the effective po-
tential is held fixed and the Schrödinger equation is solved (for the new set
of parameters {Xi + ∆Xi}), giving rise to a new density and new energy
eigenvalues. This variation we shall denote as δ1. In the second step the
potential is allowed to relax to self-consistency, with the same parameter set
{Xi + ∆Xi}. Denoting this variational step as δ2, we can write the complete
variation as δ = δ1 + δ2. Then, the change in the band term in Eqn. 2.37 is

δEeig = δ1Eeig + δ2Eeig, (2.39)

and the change of the total energy is

δE = δ1Eeig + δ2Eeig − δEr. (2.40)

After writing out the term δEr and applying the first-order perturbation
theory for the term δ2Eeig [63], one finally obtains

δE = δ1Eeig −
∫

δΩ

n2 dεxc

dn
δS · dS, (2.41)

where dS is the surface element and δS describes the change in the volume
Ω in the sense that a point S is taken to S + δS by the perturbation.
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The Eqn. 2.41 is known as Andersen’s force theorem and it’s basic message
is that in a linear approximation, the interaction drops out of the total energy
change. The self-consistency step can therefore be ignored except for the
surface term in the case of the volume change. Therefore, we came to a very
important conclusion which can save a lot of computational effort: when there
is a small perturbation in the system, during which there is no change of the
volume, the difference in the total energies of the initial and the perturbed
state can be substituted with the difference of the sums of eigenvalues of
these two states.



Chapter 3

The FLAPW Method

There are several important methods of solving the bandstructure problem
(Eqn. 2.27). One approach is to expand the (unknown) one-electron wave
function in a set of (known) basis functions. For a system with translational
symmetry, a quite general expression for such an expansion would be

ψi,k(r) =
∑

j

cijkϕjk(r). (3.1)

The sum on j is finite in practice and the set of functions {ϕjk(r)} is in general
not orthonormal, while the completeness is another problem. The expansion
coefficients cijk are, via the Rayleigh-Ritz principle [64], determined from the
secular equation

∑

j

[Hjj′(k) − εikSjj′(k)]cijk = 0, (3.2)

where

Hjj′(k) =

∫

Ω

ϕjk(r)[
−∇2

2
+ V

↑(↓)
eff ]ϕj′k(r)d

3r (3.3)

and

Sjj′(k) =

∫

Ω

ϕjk(r)ϕj′k(r)d
3r (3.4)

are the so-called overlap matrix elements. The integrals are evaluated over
the unit cell (Ω). The detailed solution of the secular equation depends on the
type of functions {ϕjk} chosen (they may or may not be energy-dependent),
but the eigenvalues always follow from the condition

det |Hjj′(k) − εikSjj′(k)| = 0. (3.5)

A very suitable choice of the basis functions that is already suggested
by Bloch’s theorem are plane waves. They are orthogonal, diagonal in mo-
mentum and any power of momentum and the implementation of planewave
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Figure 3.1: The division of space in the APW method. The muffin-tin spheres
are surrounded by the interstitial region.

based methods is rather straightforward because of their simplicity. How-
ever, since the electron wavefunctions are varying very quickly near the core,
large wavevectors are needed to represent the wavefunctions accurately. This
makes planewaves very inefficient. To overcome this problem one can employ
pseudopotential techniques, which allow an accurate description of the wave-
functions between the atoms, but avoid the fast oscillations near the core.
Thus, less basis functions are needed. Another way to solve this problem is
to use a basis set, which contains radial wavefunctions to describe the oscil-
lations near the core. This has already been suggested by Slater [65]. The
corresponding technique is called the augmented planewave method (APW).

3.1 The (L)APW Approach

Within the APW approach, space is divided into spheres centered at each
atom site, the so-called muffin-tin spheres, and the remaining interstitial
region (Fig. 3.1). Inside the muffin-tin spheres the potential is assumed
to be spherically symmetric, and in many implementations the interstitial
potential is set constant. Since the planewaves solve the Schrödinger equation
in a constant potential, while spherical harmonics times a radial function are
the solution in a spherical potential, the single particle wavefunctions ψi,k(r)
are expanded in terms of the following basis functions:

ϕG(k, r) =







ei(G+k)·r interstitial region
∑

lm

AµG
L (k)ul(r)YL(r̂) muffin-tin sphere µ , (3.6)
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where k is the Bloch vector, G is a reciprocal lattice vector, L abbreviates
the quantum numbers l and m and ul is the regular solution of the radial
Schrödinger equation

{

− h̄2

2m

∂2

∂r2
+

h̄2

2m

l(l + 1)

r2
+ V (r) − El

}

rul(r) = 0. (3.7)

Here El is an energy parameter and V (r) is the spherical component of the
potential. The coefficients AµG

L (k) are determined from the requirement that
the wavefunctions have to be continuous at the boundary of the muffin-tin
spheres.

Hence, the APW’s form a set of continuous basis functions that cover all
space, where each function consists of a planewave in the interstitial region
plus a sum of functions, which are solutions of the Schrödinger equation to a
given set of angular momentum quantum numbers lm and a given parameter
El, inside the muffin-tin spheres.

The described choice of the basis set, however, has several disadvantages.

• If the El were kept fixed, used only as a parameter during the con-
struction of the basis, the Hamiltonian could be set up in terms of this
basis. This would lead to a standard secular equation for the band en-
ergies. Unfortunately, it turns out, that the APW basis does not offer
enough variational freedom if the El are kept fixed. An accurate de-
scription can only be achieved if they are set to the corresponding band
energies. However, requiring the El’s to equal the band energies, the
latter can no longer be determined by a simple diagonalization of the
Hamiltonian matrix. Since the ul’s depend on the band energies, the
solution of the secular equation becomes a nonlinear problem, which is
computationally much more demanding than a secular problem.

• It is difficult to extend the APW method beyond the spherically av-
eraged muffin-tin potential approximation, because in the case of a
general potential the optimal choice of El is no longer the band energy.

• If, for a given choice of El, the radial functions ul vanish at the muffin-
tin radius, the boundary conditions on the spheres cannot be satisfied,
i.e. the planewaves and the radial functions become decoupled. This is
called the asymptote problem. It can already cause numerical difficul-
ties if ul becomes very small at the sphere boundary.

These problems were solved by introducing an additional term in the
basis within the muffin-tin spheres and the method is called the linearized
augmented planewave method (LAPW) [66]. In this way, extra variational
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freedom is added to the basis, so that it is not necessary to set the El equal
to the band energy. This is done by using not only the radial solution of the
Schrödinger equation, but also its derivative with respect to the energy, and
the construction can be regarded as a linearization of the APW. To realize
this recall that in the APW method the ul’s depend on the band energies and
can thus be understood as functions of r and ε. Hence, ul can be expanded
into a Taylor-series around El,

ul(ε, r) = ul(El, r) + u̇l(El, r)(ε− El) +O[(ε− El)
2]. (3.8)

Here u̇l denotes the energy derivative of ul, ∂ul(ε, r)/∂ε, and O[(ε − El)
2]

denotes errors that are quadratic in the energy difference. Therefore, the
LAPW method introduces an error of order (ε − El)

2 in the wavefunction.
Therefore, according to the variational principle the error in the calculated
band energies is of the order (ε − El)

4. Because of this high order, the
linearization works very well even over rather broad energy regions. In most
cases a single set of energy parameters is sufficient for the whole valence
band. However, sometimes the energy region has to be split up in two (very
rarely more) windows with separate sets of energy parameters.

The LAPW basis functions are of the form

ϕG(k, r) =







ei(G+k)·r interstitial region
∑

L

AµG
L (k)ul(r)YL(r̂)+BµG

L (k)u̇l(r)YL(r̂) muffin-tin sphere µ

(3.9)
with the extra term Bk

Lu̇l(r)YL(r̂) compared to the APW method. The ad-
ditional coefficient is determined by requiring that not only the basis func-
tions, but also their derivatives with respect to r are continuous at the sphere
boundaries. It is useful to require the normalization

〈u|u〉 =

∫ RMT

0

u2
l (r)r

2dr = 1. (3.10)

Here RMT is the muffin-tin sphere radius. Taking the derivative of (3.10) with
respect to the energy it can easily be shown, that ul and u̇l are orthogonal. u̇l

is calculated from a Schrödinger-like equation, derived by taking the energy
derivative of (3.7),

{

− h̄2

2m

∂2

∂r2
+

h̄2

2m

l(l + 1)

r2
+ V (r) − El

}

ru̇l(r) = rul(r). (3.11)

Still the solution of this equation has to be made orthogonal to ul, since
any linear combination of u̇l and ul also solves the equation. Once the ul
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and u̇l are made orthogonal the basis functions inside the spheres form a
completely orthogonal basis set, since the angular functions Ylm(r̂) are also
orthogonal. However, the LAPW functions are in general not orthogonal to
the core states, which are treated separately in the LAPW method. This
fact can cause problems in the presence of high lying core states. A detailed
discussion of these problems and strategies to circumvent them can be found
in the book by Singh [67], which includes a very comprehensive review of
many aspects of the LAPW method.

With the construction of the LAPW basis the main problems of the APW
method are solved:

• Since it is no longer necessary to set the energy parameters equal the
band energies, the later can be determined by a single diagonalization
of the Hamiltonian matrix.

• The LAPW method can be extended to nonspherical muffin tin poten-
tials with little difficulty, because the basis offers enough variational
freedom. This leads then to the full-potential linearized augmented
planewave method (FLAPW).

• If ul is zero at the sphere boundary, its radial derivative and u̇l are
in general nonzero. Hence, the boundary conditions can always be
satisfied and there is no asymptote problem.

The nonlinearity inherent to the APW method can only be circumvented at
the expense of a larger eigenvalue problem. Within LAPW (and also within
APW) the basis functions are represented by planewaves. The functions
inside the muffin tins are coupled to the planewaves via the boundary con-
ditions, and can only be varied indirectly by a variation of the planewave
coefficients. Clearly, with a finite number of planewaves, at maximum the
same number of functions inside the spheres can be varied independently.
Hence, to make use of the of the extra variational freedom, that the LAPW
basis set allows compared to the APW basis, i.e. to vary the ul’s and the u̇l’s
independently, more planewaves have to be used.

3.2 The Full-Potential Description

In the past, in the majority of applications of APW and LAPW methods,
the potential in the unit cell V (r) was typically approximated by

V (r) =

{

V 0
I = const. interstitial region

V 0
MT (r) muffin-tin spheres,

(3.12)
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using a constant potential in the interstitial region and a spherically sym-
metric potential inside each sphere. While the LAPW method yields accu-
rate results for close-packed metal systems the restrictions to the potential
(so-called shape-approximations) become difficult to justify for crystals with
open structures such as silizides, perovskides, surfaces or clusters.

In the full-potential LAPW method (FLAPW) [68, 69] there are no shape-
approximations in the interstitial region and inside the muffin-tin spheres.
The constant interstitial potential V 0

I is replaced by the warped potential
∑

V G
I eiG·r and to the spherical muffin-tin potential the non-spherical term

is added,

V (r) =















∑

G

V G
I eiG·r interstitial region

∑

L

V L
MT (r)YL(r̂) muffin-tin spheres.

(3.13)

The charge density, ρ(r), is represented in the same way as the potential:

ρ(r) =















∑

G

ρG
I e

iG·r interstitial region

∑

L

ρL
MT (r)YL(r̂) muffin-tin spheres.

(3.14)

3.2.1 The Muffin-Tin A- and B-Coefficients

Within FLAPW the electron wavefunctions are expanded differently in the
interstitial region and the muffin-tins. Each basis function consists of a
planewave in the interstitial, which is matched to the radial functions and
spherical harmonics in the muffin-tins. The coefficients of the function inside
the spheres are determined from the requirement, that the basis functions
and their derivatives are continuous at the sphere boundaries. These coeffi-
cients play an important role. In this section we will therefore discuss how
the matching conditions can be solved and what properties they induce.

In many systems where the FLAPW method can be applied, some atoms
are symmetry equivalent, i.e. these atoms can be mapped onto each other
by a space group operation {R|τ}. Such a group of atoms is called an atom
type, represented by one of the atoms. Let {Rµ|τ µ} be the operation that
maps the atom µ onto its representative. This atom can now be assigned a
local coordinate frame Sµ, where the origin of Sµ is at the atoms position
pµ.

The local frame is chosen such that the unit vectors of the local frame
Sµ are mapped onto those of the global frame by Rg (RµSµ = Sg). The
local frame of the representative atom Sα is only translated with respect to
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the global frame, i.e. the same rotation Rµ maps Sµ onto Sα. The potential
(and other quantities) inside the muffin-tins can now be written in terms
of the local coordinate system. Due to the symmetry we find VMT α(rα) =
VMT µ(rµ), where rα and rµ are expanded in terms of the local frames Sα

and Sµ respectively. As a consequence the radial functions ul(r) and the
Hamiltonian matrices are the same for all atoms of the same type. This
way symmetry is exploited to save memory and computing time (during the
calculation of the t-matrices).

Any planewave can be expanded into spherical harmonics via the Rayleigh
expansion,

eiKr = 4π
∑

L

il jl(rK) Y ∗
L (K̂) YL(r̂), (3.15)

where r = |r|, K = |K| and K abbreviates (G + k). Looked at from the
local frame K and pµ appear rotated, besides the origin of the local frame is
shifted. Therefore, the planewave has the following form in the local frame:

ei(RµK)(r+Rµpµ) (3.16)

Thus, the Rayleigh expansion of the planewave in the local frame is given
by:

eiKpµ

4π
∑

L

il jl(rK) Y ∗
L (RµK̂) YL(r̂) (3.17)

The requirement of continuity of the wavefunctions at the sphere boundary
leads to the equation

∑

L

AµG
L (k) ul(RMT α)YL(r̂) +BµG

L (k) u̇l(RMT α)YL(r̂)

= eiKpµ

4π
∑

L

il jl(rK) Y ∗
L (RµK̂) YL(r̂), (3.18)

where RMT α is the muffin-tin radius of the atom type α. The second require-
ment is, that the derivative with respect to r, denoted by ∂/∂r = ′, is also
continuous

∑

L

AµG

L (k) u′l(RMT α)YL(r̂) +BµG

L (k) u̇′l(RMT α)YL(r̂)

= eiKpµ

4π
∑

L

il Kj ′l(rK) Y ∗
L (RµK̂) YL(r̂). (3.19)

These conditions can only be satisfied, if the coefficients of each spherical
harmonic YL(r̂) are equal. Solving the resulting equations for AµG

L (k) and
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BµG
L (k) yields:

AµG
L (k) = eiKpµ

4π
1

W
il Y ∗

L (RµK̂)

[u̇l(RMT α)Kj ′l(RMT αK) − u̇′l(RMT α)jl(RMT αK)]

BµG
L (k) = eiKpµ

4π
1

W
il Y ∗

L (RµK̂)

[u′l(RMT α)jl(RMT αK) − ul(RMT α)Kj ′l(RMT αK)]

(3.20)

The Wronskian W is given by:

W = [u̇l(RMT α)u′l(RMT α) − ul(RMT α)u̇′l(RMT α)] (3.21)

Transformation of the FLAPW basis functions in systems that pos-
sess inversion symmetry

Planewaves transform in a very simple way under the operation r → −r. Let
I be the inversion operator:

IeiKr = e−iKr =
(

eiKr
)∗

(3.22)

The FLAPW basis functions still have this property, i.e. ϕG(k,−r) = ϕ∗
G(k, r).

Clearly, the system must possess inversion symmetry, because only if there
is an equivalent atom at the position −pµ to each atom µ at position pµ, the
basis functions inside the corresponding spheres can be complex conjugates.
The value of the basis function ϕG(k, r) inside the muffin-tin µ is give by:

ϕG(k, r) =
∑

L

AµG
L (k) ul(r)YL(r̂) +BµG

L (k) u̇l(r)YL(r̂) (3.23)

The vector −r lies in the opposite muffin-tin at the position −pµ. Let’s
denote this atom by −µ. Thus, we find:

ϕG(k,−r) =
∑

L

A−µG

L (k) ul(r)YL(r̂) +B−µG

L (k) u̇l(r)YL(r̂) (3.24)

The argument of the spherical harmonic is r̂ rather than −r̂, because the
vector is expanded in the local frame of the atom −µ. Substituting the
explicit form of A−µG

L (k) and B−µG

L (k) from (3.20), yields:

ϕG(k,−r) =
∑

L

eiK(−pµ) il Y ∗
L (−RµK̂) YL(r̂){Aul(r) +Bu̇l(r)} (3.25)
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where it has been used, that p−µ = −pµ and R−µ = −Rµ, A and B abbre-
viates all terms in (3.20) that are real and do not depend on r or r̂. Using
that YL(r̂) = (−1)l YL(r̂) (3.25) becomes:

ϕG(k,−r) =
∑

L

e−iK(pµ) (−i)l Y ∗
L (RµK̂) YL(r̂){Aul(r) +Bu̇l(r)} (3.26)

In the last step it can be exploited that Yl−m(r̂) = (−1)m Y ∗
lm(r̂). Substituting

m′ = −m (3.26) becomes:

ϕG(k,−r) =
∑

lm′

e−iK(pµ) (−i)l Ylm′(RµK̂) Y ∗
lm′(r̂){Aul(r) +Bu̇l(r)} (3.27)

Hence, we have shown, that the FLAPW basis functions transform according
to

ϕG(k,−r) = ϕ∗
G(k, r) (3.28)

in the interstitial region and the muffin-tins, if the system possesses inversion
symmetry.

The Hamiltonian Matrix of Systems with Inversion Symmetry

The property of the FLAPW basis functions derived in the previous section
leads to property of the Hamiltonian and overlap matrix. In systems that
possess inversion symmetry these two matrices are real symmetric rather
than complex hermitian. The Hamiltonian depends explicitly on r via the
potential. The matrix elements are given by:

HG′G(k) =

∫

ϕ∗
G′(k, r)H(r)ϕG(k, rd3r (3.29)

Substituting r′ = −r yields:

HG′G(k) =

∫

ϕG′(k, r′)H(r′)ϕ∗
G(k, r′)d3r (3.30)

where (3.28) and H(r) = H(−r) have been used. In addition the Hamiltonian
operator is real, i.e. H(r) = H∗(r). Thus, we finally obtain:

HG′G(k) =

∫

ϕG′(k, r′)H∗(r′)ϕ∗
G(k, r′d3r

=
(

HG′G(k)
)∗

. (3.31)

Apparently, the same relation holds for the overlap matrix. The fact that
the two matrices are real means a great simplification in actual calculation.
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In principle, the diagonalization of a hermitian matrix is no more difficult
than in the real case. However, one complex multiplication contains four real
multiplication, and therefore the complex problem is far more “expensive”
than the real, and the diagonalization needs the biggest part of the computing
time in each iteration.

3.2.2 The Generalized Eigenvalue Problem

The solution of the eigenvalue problem has to be carried out separately for
every Bloch vector, using the basis set and the Hamiltonian matrix set up for
this Bloch vector. Having this established, the index k to the basis functions
and the Hamiltonian matrix will here be omitted for simplicity.

It should be noted that the FLAPW basis functions do not form an
orthogonal basis set, although in general the planewaves do. The reason is
that the muffin-tin spheres are cut out from the integration region in which
the orthogonality is defined (the unit cell). An additional contribution comes
from the muffin-tin. Even though the ul(r)YL and u̇l(r)YL are mutually
orthogonal, in general each planewave couples to all functions in the spheres.
Due to the non-orthogonality of the basis functions, the overlap matrix S is
not a diagonal, but a hermitian matrix, with elements

SG′G =

∫

ϕ∗
G′(r)ϕG(r)d3r. (3.32)

The secular equation (3.4), in the matrix form written as

{H − εiS} ci = 0, (3.33)

where the eigenvector ci is the coefficient vector corresponding to the ith

eigenvalue, is called a generalized eigenvalue problem.
However, this problem can be reduced to a standard eigenvalue problem

using the Cholesky decomposition. It can be shown [70] that any hermi-
tian and positive definite matrix can be decomposed into a matrix product
of a lower triangular with only positive diagonal elements matrix and its
transposed. Clearly, the overlap matrix satisfies these conditions and can be
written

S = LLtr (3.34)

Therefore (3.33) becomes
Hci = εiLLtrci (3.35)

multiplying from the left with L−1 and introducing a unit matrix we get

L−1H(L−1)trLtrci = εiL
trci (3.36)
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defining
P = L−1H(L−1)tr, xi = Ltrci (3.37)

we finally have
Pxi = εixi (3.38)

Thus the generalized eigenvalue problem has been reduced to a simple eigen-
value problem. The eigenvectors ci can be obtained by the back-transformation

ci = (Ltr)−1xi (3.39)

3.3 Film Calculations within FLAPW

The ability to treat surfaces has become very important nowadays with the
growing number of investigations in this area. It is necessary in this case
to make some adjustments to the basis set, since the translation symme-
try in the direction perpendicular to the surface is broken, and only the
2-dimensional symmetry parallel to the surface is left to be used to reduce
the problem. In our approach surfaces are approximated by thin films, typ-
ically 10–15 atomic layers thick. Obviously, this approximation, which is
called the thin-slab approximation, can only yield good results if the inter-
action between the two surfaces of the film is week enough, so that each of
them shows the properties of the surfaces of an ideal semi-infinite crystal. In
the case of film calculations space is divided into three distinct regions, the
muffin-tins, the interstitial and the vacuum region (Fig. 3.2). The interstitial
region now stretches from −D/2 to D/2 in z-direction, which is defined to be
the direction perpendicular to the film. The representation of the wavefunc-
tions inside the muffin-tin spheres remains exactly the same as in the bulk
case. Since the periodicity along the z-direction is lost, the unit cell extends
principally from −∞ to ∞ in z-direction. Still the wavefunctions can be
expanded in terms of planewaves. However, the wavevectors perpendicular
to the film are not defined in terms of D, but in terms of D̃, which is chosen
larger than D to gain greater variational freedom. Therefore, the planewaves
have the form

ϕG‖G⊥
(k‖, r) = ei(G‖+k‖)·r‖ eiG⊥z (3.40)

with

G⊥ =
2πn

D̃
(3.41)

where G‖ and k‖ are the 2-dimensional wave- and Bloch vectors, r‖ is the
parallel component of r and G⊥ is the wavevector perpendicular to the film.
The basis functions in the vacuum region are constructed in the same spirit
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Figure 3.2: The unit cell in film calculations: (I) the muffin-tin spheres; (II)
the interstitial region; the film is delimited on both sides by vacuum (III)

as the functions in the muffin-tins [71]. They consist of planewaves parallel
to the film, and a z-dependent function uG‖

(k‖, z), which solves the corre-
sponding 1-dimensional Schrödinger equation (3.42), plus its energy deriva-
tive u̇G‖

(k‖, z).

{

− h̄2

2m

∂2

∂z2
+ V0(z) − Evac +

h̄2

2m
(G‖ + k‖)

2

}

uG‖
(k‖, z) = 0 (3.42)

Evac is the vacuum energy parameter and V0(z) is the planar averaged part
of the vacuum potential. As in the case of u̇l in the muffin-tins, the func-
tion u̇G‖

(k‖, z) is calculated from a Schrödinger-like equation, which can be
obtained by deriving (3.42) with respect to the energy.

{

− h̄2

2m

∂2

∂z2
+ V0(z) − Evac +

h̄2

2m
(G‖ + k‖)

2

}

u̇G‖
(k‖, z) = uG‖

(k‖, z)

(3.43)
The resulting basis functions have the form

ϕG‖G⊥
(k‖, r) =

{

AG‖G⊥
(k‖)uG‖

(k‖, z) +BG‖G⊥
(k‖)u̇G‖

(k‖, z)
}

ei(G‖+k‖)r‖

(3.44)
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The coefficients AG‖G⊥
(k‖) and BG‖G⊥

(k‖) are determined in exactly the
same way as it is done for the muffin-tins (MT) by requiring that the functions
are continuous and differentiable at the vacuum boundary. To increase the
variational freedom in the vacuum basis functions, instead of the energy
parameter Evac a whole series of G⊥-dependent energy parameters, Ei

vac =

EG⊥
vac = Evac − h̄2

2m
G2

⊥ can be used [72]. In general this is not necessary, since
the energy spectrum of the electrons in the vacuum region is small.

Summarizing, the basis set used for thin film calculations with the FLAPW
method is

ϕG‖G⊥
(k‖, r) =











































ei(G‖+k‖)r‖ eiG⊥z Int.

{

AG‖G⊥
(k‖)uG‖

(k‖, z)

+BG‖G⊥
(k‖)u̇G‖

(k‖, z)
}

ei(G‖+k‖)r‖ Vac.

∑

L

AµG
L (k)ul(r)YL(r̂) +BµG

L (k)u̇l(r)YL(r̂) MT µ.

(3.45)

3.4 Relativity in Valence Electron Calcula-

tions

Relativistic effects are important for the correct numerical description of core
or valence electrons. Both core and valence electrons have finite wavefunc-
tions near the nucleus, where the kinetic energy is large. This kinetic energy
enhancement becomes more significant for heavier elements and compounds.
Additionally, only relativistic effects, in particular the spin-orbit-coupling,
introduce a link between spatial and spin coordinates. Thus, information
about the orientation of spins relative to the lattice can only be gained if
relativity is taken into account. For fully relativistic description of the elec-
tronic structure all relativistic effects (mass-velocity, Darwin-term, spin-orbit
coupling) have to be taken into account [73]. However, in many applications
an approximation is used, where the spin-orbit interaction is neglected. This
approximation is called the scalar relativistic approximation. The spin-orbit
interaction can be then additionally included, either self-consistently or, with
the use of Andersen’s force theorem, in a second variational scheme.
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3.4.1 The Kohn-Sham-Dirac Equation

In a relativistic density functional theory the Kohn-Sham equation has the
form of a single particle Dirac equation

{

cα · p + (β − 1)mc2 + Veff(r)
}

Ψ = EΨ (3.46)

α =

((

0 σx

σx 0

)

,

(

0 σy

σy 0

)

,

(

0 σz

σz 0

))tr

=

(

0 σ

σ 0

)

(3.47)

β =

(

I2 0
0 −I2

)

(3.48)

Here, σx σy σz are the Pauli matrices and σ is the vector of Pauli matrices,
p is the momentum operator, and In denotes an (n × n) unit matrix. V eff

is the effective potential, that contains electron-nucleon Coulomb potential,
Hartree potential and exchange-correlation potential. In the case of non-zero
spin-polarization, V eff becomes spin-dependent. Finally, Ψ is the relativistic
four component wavefunction.

The straightforward way to solve this problem would be to expand each of
the four components of Ψ in terms of the FLAPW basis. However, if all four
components were treated with the same accuracy, this would result in a ba-
sis set which contains four times as many functions as in the non-relativistic
(non-magnetic) case. Since the numerical effort of the Hamiltonian diago-
nalization scales with the dimension of the matrix to the power of three, this
would increase the computing time needed for the diagonalization by a factor
of 64.

The FLAPW implementation we use introduces some approximations to
make relativistic calculations more efficient. One of these approximations
is the scalar relativistic approximations, which has been suggested by D.D.
Koelling and B.N. Harmon [74], where the spin-orbit term is neglected, and
spin and spatial coordinates become decoupled. Hence, the Hamiltonian ma-
trix reduces to two matrices of half the size, which can be diagonalized sepa-
rately. This saves a factor of four in computing time. The scalar relativistic
approximation will be discussed more detailed in the next section. It should
be noted, that relativistic effects are only significant close to the nucleus,
where the kinetic energy is large. It is therefore reasonable to treat the inter-
stitial region and the vacuum non-relativistically. Thus, merely within the
muffin-tins the electrons are treated relativistically. And only the large com-
ponent of Ψ is matched to the non-relativistic wavefunctions at the boundary
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between the muffin-tins and the interstitial region, because the small com-
ponent is already negligible at this distance from the nucleus. The small
component is attached to the large component, and cannot be varied inde-
pendently. However, this is a sensible approximation for two reasons: Firstly
even inside the muffin-tin sphere the large component is still much bigger
than the small component, and plays the more important role, and secondly
the two components are determined by solving the scalar relativistic equa-
tions for the spherically averaged potential. Therefore, they are very well
suited to describe the wavefunctions.

Hence, the size of the basis set and the Hamiltonian matrix remains the
same as in non-relativistic calculations, but the problem has to be solved
twice, once for each direction of spin. This amounts to a numerical effort,
that is equal to that needed in spin-polarized non-relativistic calculations.

3.4.2 The Scalar Relativistic Approximation

As it was pointed out in the previous section, the electrons are only treated
relativistically inside the muffin-tin spheres. Thus, the first problem that
has to be addressed is the construction of the relativistic radial function.
This is done by solving the scalar relativistic equation, including only the
spherically averaged part of the potential. The starting point is the following
Dirac equation.

{

cα · p + (β − 1)mc2 + V(r)
}

Ψ = EΨ (3.49)

The solution of (3.49)is discussed in many textbooks, e.g. E.M. Rose [75].
Due to spin-orbit coupling m and ms are not good quantum numbers any
more, and they have to be replaced by the quantum numbers κ and µ (or
j and µ), which are eigenvalues of the operators K and the z-component of
the total angular momentum jz (or the total angular momentum j and jz)
respectively. K is defined by

K = β(σ · l + 1) (3.50)

The solutions of (3.49) have the form

Ψ = Ψκµ =

(

gκ(r)χκµ

ifκ(r)χ−κµ

)

, (3.51)

where gκ(r) is the large component, fκ(r) is the small component, χκµ and
χ−κµ are spin angular functions, which are eigenfunctions of j, jz, K and s2
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with eigenvalues j, µ, κ (-κ) and s = 1/2 respectively. The spin angular
functions can be expanded into a sum of products of spherical harmonics
and Pauli spinors, where the expansion coefficients are the Clebsch-Gordon
coefficients. The radial functions have to satisfy the following set of coupled
equations.









−κ+ 1

r
− ∂

∂r
2Mc

1

c
(V (r) − E)

κ− 1

r
− ∂

∂r









(

gκ(r)
fκ(r)

)

= 0 (3.52)

with

M = m+
1

2c2
(E − V (r)). (3.53)

To derive the scalar relativistic approximation D.D. Koelling and B.N. Har-
mon [74] introduce the following transformation.

(

gκ(r)
φκ(r)

)

=







1 0

1

2Mc

κ + 1

r
1







(

gκ(r)
fκ(r)

)

(3.54)

Using this transformation (3.52) becomes








− ∂

∂r
2Mc

1

2Mc

l(l + 1)

r2
+

1

c
(V (r) − E) +

κ+ 1

r

M
′

2M2c
−2

r
− ∂

∂r









(

gκ(r)
φκ(r)

)

= 0,

(3.55)
where M

′
denotes the derivative of M with respect to r (∂M/∂r), and the

identity κ(κ+1) = l(l+1) has been used. Recalling, that κ is the eigenvalue
of K = β(σ · l + 1) the term (κ+ 1)M

′
/2M2cr can be identified as the spin-

orbit term. This term is dropped in the scalar relativistic approximation,
because it is the only one, that causes coupling of spin up and spin down
contributions. The radial functions gl(r) and φl(r) (the index κ has been
replaced by l) can now be calculated from the following set of differential
equations.

∂

∂r
gl(r) = 2Mcφl(r) (3.56)

∂

∂r
φl(r) =

(

1

2Mc

l(l + 1)

r2
+

1

c
(V (r) − E)

)

gl(r) −
2

r
φl(r) (3.57)

The energy derivative of these yields straightforwardly a set of equations
for ġl(r) and φ̇l(r), which are the relativistic analog of u̇l(r). For numerical
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reasons the functions gl(r) and φl(r) are replaced by pl(r) = rgl(r) and
ql(r) = crφl(r). In our implementation of FLAPW the radial wavefunctions
are normalized according to

〈(

gl

φl

)∣

∣

∣

∣

(

gl

φl

)〉

=

∫ RMT

0

(g2
l (r) + φ2

l (r))r
2dr = 1 (3.58)

The energy derivatives of the radial functions have to be made orthogonal to
the radial functions.

〈(

gl

φl

)∣

∣

∣

∣

(

ġl

φ̇l

)〉

= 0 (3.59)

Thus, the scalar relativistic FLAPW basis set is

ϕG‖G⊥
(r) =







































1√
Ω
ei(G‖+k‖)r‖ eiG⊥z Int.

{

AG‖G⊥
uG‖

(z) +BG‖G⊥
u̇G‖

(z)
}

ei(G‖+k‖)r‖ V ac.

∑

α
lm

AαGk
lm

(

gl(r)
φl(r)

)

Ylm(r̂) +BαGk
lm

(

ġl(r)

φ̇l(r)

)

Ylm(r̂) MT

(3.60)
Note that the Pauli-spinors have been omitted, since the spin up and down
problems are solved independently within the scalar relativistic approxima-
tion. Rewriting (3.55)

HSP

(

gl(r)
φl(r)

)

= E

(

gl(r)
φl(r)

)

(3.61)

with

HSP =









1

2M

l(l + 1)

r2
+ V (r) −2c

r
− c

∂

∂r

c
∂

∂r
−2mc2 + V (r)









(3.62)

a matrix expression for the scalar relativistic Hamiltonian including only the
spherically averaged part of the potential can be obtained. For completeness,
the radial charge density is defined by

ρl(r) =

〈(

gl

fl

)∣

∣

∣

∣

(

gl

fl

)〉

=

∫ RMT

0

(g2
l (r) + f 2

l (r))r2dr. (3.63)
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Chapter 4

Non-Collinear Magnetism

The energy functional of a general magnetic system can be expressed in two
ways, as a functional of the charge density n and the magnetization density
vector field m, or as a functional of the hermitian 2×2 density matrix ρ. The
two formulations are completely equivalent. The density matrix is defined
by the following equation:

ρ =
1

2
n I2 + σ · m =

1

2

(

n+mz mx − imy

mx + imy n−mz

)

. (4.1)

The potential matrix can be defined in the same way,

V = V I2 + µB σ · B =

(

V + µBBz µB(Bx − iBy)
µB(Bx + iBy) V − µBBz

)

. (4.2)

The components of the density matrix are given in terms of the solutions of
the Kohn-Sham equation:

ραβ =
N
∑

i=1

ψ∗
i,αψi,β. (4.3)

In an actual implementation of non-collinear magnetism in a computer pro-
gram these matrix quantities are very useful, though they are less intuitive
than the “physical” quantities n, m, V , and B.

Using the potential matrix (4.2), the Kohn-Sham equation becomes

{

− h̄2

2m
∇2 I2 + V

}

ψi = εiψi. (4.4)

The kinetic energy part of the Hamiltonian is diagonal in the two spin di-
rections. It is only the off-diagonal part of the hermitian 2 × 2 potential

35
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matrix, e.g. V21 = µB(Bx + iBy), that couples the two components of the
Pauli spinor ψi. If the B-field is collinear, the spin coordinate frame can
always be chosen such that the B-field points in the spin z-direction. In this
case V21, and thus the off-diagonal part of the Hamiltonian, becomes zero,
because Bx and By are zero. The notation V↑ = V +µBBz, V↓ = V −µBBz is
commonly used for the diagonal elements of V in the collinear case. Since the
two spin directions become completely independent, the spin-up and down
problem can be solved separately in two steps. Each step can be treated like
the non-magnetic problem with the appropriate potential V↑ or V↓. In prac-
tice this means that extending a non-magnetic ab-initio program to collinear
magnetism is rather straight forward. In addition collinear calculations are
by far less costly. Since the effort required to diagonalize the Hamiltonian
matrix scales with the number of basis functions to the third power, diago-
nalizing two small matrices for each spin is much faster than diagonalizing
one matrix of twice the size. It also requires only 1/4 of the memory to
store the matrix. Another advantage arises when the system has inversion
symmetry. In that case the Hamiltonian and the overlap matrix become real
symmetric rather than complex hermitian (cf. Sec. 3.2.1, p. 24). In a general
non-collinear calculation the Hamiltonian matrix is always complex, due to
the complex Pauli matrix σy, i.e. the term iµBBy in V21. A third point is,
that in most cases non-collinearity reduces the symmetry. The consequence
is, that the area of the irreducible part of the Brillouin zone increases. The
computational effort increases linearly with the number of k-points that have
to be taken into account for the Brillouin zone integration. So far most mag-
netic calculations have been performed for collinear systems, because such
calculations are more simple and significantly less time consuming.

4.1 The Spin Space Groups

The spin-orbit coupling and the dipole interaction, which is usually treated
classically, are the only terms in the Hamiltonian that couple real space
and spin space. Only these parts of the Hamiltonian create a relation be-
tween the spin and the spatial coordinates. When the spin-orbit coupling
and the dipole interaction (both terms are of similar size in the systems un-
der consideration) are neglected, real space and spin space can be regarded
as completely independent. For this purpose generalized groups, the spin
space groups (SSG)[76], have been introduced [77, 78]. The action of a SSG
operator {αS|αR|t} on a two-component spinor can be defined by

{αS|αR|t}ψ(r) = U(αS)ψ({αR|t}−1r) = U(αS)ψ(α−1
R r − α−1

R t), (4.5)
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where ψ is a two-component spinor, αS and αR are the spin and space ro-
tation, respectively, t is a space translation and U is the spin 1/2 rotation
matrix (with α, β, γ Euler angles),

U(α, β, γ) =

(

e−i α+γ
2 cos(β

2
) −e−i α−γ

2 sin(β
2
)

ei α−γ
2 sin(β

2
) ei α+γ

2 cos(β
2
)

)

. (4.6)

Under the restriction αS = αR we return to the definition of the operations
of the usual space group. The operators of the space group are thus a subset
of the SSG operators. The condition αS = αR implies that the spin and the
space coordinates are transformed in the same way. This property is required
for operations that leave the Hamiltonian invariant when SOC is taken into
account. The relative angle between the lattice and the spin is important
in this case. However, when SOC is neglected αS and αR can be different.
This is a very important feature of the SSG and it is a prerequisite for the
treatment of incommensurate spin-spirals within an ab-initio calculation.

4.2 Spin-Spirals

A magnetic structure with moments that are rotated by a constant angle
from atom to atom along a certain direction of the crystal is called a spin-
spiral. This can be described by a reciprocal lattice vector, the spin-spiral
vector q. The rotation angle of the magnetic moment of an atom at the
position Rn is then given by ϕ = q · Rn. The magnetic moment of an atom
at the position Rn is given by

Mn = M(cos(q · Rn + φ) sin θ, sin(q ·Rn + φ) sin θ, cos θ), (4.7)

where θ is the so-called cone angle, a relative angle between the magnetic mo-
ment and the rotation axis, and φ an eventual phase factor, also called phase
angle. Fig. 4.1 shows four examples of spin-spirals with spin-rotation axis
perpendicular (upper two) and parallel (lower two) to the spin-spiral vector
q and different angles between the spin-rotation axis and the magnetic mo-
ment. The spin-spiral vector q is a vector in the real space coordinate frame,
while the spin-rotation axis is a direction (vector) in the spin-coordinate
frame. Since these two coordinate frames become totally independent when
spin-orbit coupling is neglected, the angle between the spin-spiral vector q
and the spin-rotation axis becomes meaningless. In that case the two spirals
at the top and the two spirals at the bottom of Fig. 4.1 become completely
equivalent. However, the spin spirals with different θ do not become equiv-
alent. θ is still a well defined quantity, if SOC is neglected, because the
rotation axis is a vector (direction) in spin space.
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Figure 4.1: Four examples of spin-spirals with spin-rotation axis perpendic-
ular (upper two) and parallel (lower two) to the spin-spiral vector q. For
each case two spirals with cone angles of θ = π/2 and θ = π/4 between the
magnetic moment and the rotation axes are shown.

Spin-spirals are frequently called spin density wave, or more specific spiral
spin density wave (to distinguish from the longitudinal spin density waves)
or frozen magnons. The origin of the last term is that a spin-spiral looks like
a “snap shot” of a single magnon at a fixed time. Spin spiral calculations can
therefore be used to simulate the effect of temperature on a magnetic system
(Sec. 5.3). Another possible application of spin-spirals is the simulation of
domain walls including the calculation of the formation energy.

Though there are many possible applications for spin-spiral calculations,
it was the discovery of a spiral ground state structure in fcc iron [79] and
4f and 5f metals [80] that gave rise to many theoretical studies [81, 82].
A very important theorem, which allows the treatment of the spin-spirals
in the first-principles calculations without the use of large super-cells, is the
generalized Bloch theorem [83, 84]. This theorem, however, can only be
proved when SOC is neglected. For this reason the spin-rotation axis will
always be considered as parallel to the z-axis of the spin-coordinate frame.
Thus, only themx andmy components are rotated, while mz does not change.

4.3 Generalized Bloch Theorem

In the case of an incommensurate spin-spiral the periodicity with respect to
lattice translations along the direction of q is lost. This is a major problem
for ab-initio methods that rely on the translational periodicity. However,
when spin-orbit coupling is neglected all atoms of the spiral structure are
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equivalent. The magnitude of the magnetic moment of each atom is the
same and they all “see” the same local environment, i.e. the relative angles
between the local moment and the moments of the neighbors are equal. Only
the angle between the local moment and the lattice changes from site to
site, but that is only significant in the presence of SOC. This leads to a
generalization of the Bloch Theorem[83, 84].

Let us consider a spin-spiral structure in a crystal without an external
magnetic field and take the rotation angle ϕ = q ·Rn to be counterclockwise.
The only term of the Hamiltonian that changes from site to site is the ex-
change correlation B-field Bxc, i.e. the matrix potential V = V I2+µBσ ·Bxc.
Hence, the Hamiltonian satisfies the relation

H(r + Rn) = U(qRn)H(r)U†(qRn). (4.8)

As pointed out in the previous section the rotation axis can always be taken
to be along the spin z-axis. Thus, the spin 1/2 rotation matrix (Eq.4.6 ) has
the form

U(qRn) =

(

e−iϕ/2 0
0 eiϕ/2

)

, ϕ = q ·Rn. (4.9)

Keeping these properties of the Hamiltonian in mind we can define a general-
ized translation, Tn = {−qRn|ε|Rn}, that combines a lattice translation and
a spin rotation. Here ε denotes the identity operation. These translations
are members of the SSG but not of the usual space group, since the rotation
in spin space differs from the rotation in real space. Applying a generalized
translation to Hψ yields

TnH(r)ψ(r) = U(−qRn)H(r + Rn)U†(−qRn)U(−qRn)ψ(r + Rn)

= H(r)U(−qRn)ψ(r + Rn). (4.10)

Thus, the generalized translation commutes with the Hamiltonian:

TnH = HTn (4.11)

It can be shown that the generalized translation operations satisfy the rela-
tion

TnTm = TmTn = Tn+m (4.12)

In analogy with the proof of Bloch’s theorem[59] it follows that the eigen-
states can be chosen such that

Tnψ(k, r) = U(−qRn)ψ(k, r + Rn) = eik·Rnψ(k, r). (4.13)
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This formulation of the generalized Bloch Theorem is equivalent to the state-
ment that the eigenstates of the Hamiltonian can be written in the form

ψ(k, r) = eik·r

(

e−iq·r/2α(k, r)
e+iq·r/2β(k, r)

)

, (4.14)

where α(k, r) and β(k, r) are functions with translational periodicity, e.g.
α(k, r) = α(k, r+Rn). We will prove the equivalence of (4.13) and (4.14) in
two steps.

(i) (4.14) ⇒ (4.13)

Tnψ(k, r) =

(

eiq·Rn/2 0
0 e−iq·Rn/2

)

eik·(r+Rn)

(

e−iq·(r+Rn)/2α(k, r + Rn)
e+iq·(r+Rn)/2β(k, r + Rn)

)

= eik·Rnψ(k, r) (4.15)

(ii) (4.13) ⇒ (4.14) α and β can always be defined to be

α(k, r) =
ψ1(k, r)

ei(k−q/2)r
, β(k, r) =

ψ2(k, r)

ei(k+q/2)r
, (4.16)

where ψ1 and ψ1 are the two components of the spinor ψ. Now it remains
to be proved that α and β are periodic. Starting from (4.13) we find

(

eiq·Rn/2 0
0 e−iq·Rn/2

)(

ei(k−q/2)(r+Rn)α(k, r + Rn)
ei(k+q/2)(r+Rn)β(k, r + Rn)

)

=

eik·Rn

(

ei(k−q/2)rα(k, r + Rn)
ei(k+q/2)rβ(k, r + Rn)

)

(4.17)

⇒ eik·Rn

(

ei(k−q/2)rα(k, r + Rn)
ei(k+q/2)rβ(k, r + Rn)

)

= eik·Rn

(

ei(k−q/2)rα(k, r)
ei(k+q/2)rβ(k, r)

)

⇒ α(k, r + Rn) = α(k, r), β(k, r + Rn) = β(k, r). (4.18)

The fact that α and β are periodic functions is very important for the im-
plementation of the spin-spiral into the FLAPW method.

4.4 Non-Collinear Magnetism in FLAPW

The implementation of non-collinear magnetism in the first non-collinear ab-
initio calculations [85, 86, 87, 88, 89, 81, 90], allows only one direction of
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magnetization per atom, i.e. the direction of the magnetization density m
is not allowed to change within one sphere1, but varies only from sphere to
sphere (the atomic sphere approximation for the direction of magnetization).
This agrees with the intuitive picture that each atom carries a magnetic
moment and these moments differ between the atoms. Such methods describe
only the inter-atomic non-collinearity. However, in general the direction of
the magnetization changes continuously from site to site, though, in many
cases, the deviations from the main atomic direction are only significant in a
region between the atom, where the magnitude of the magnetization is rather
small. The first calculation that treated the magnetization as a continuous
vector quantity was published by Nordström et al. [91]. They followed the
most general approach allowing the magnetization to change magnitude and
direction continuously, i.e. even within an atom. Thus, their implementation,
that is based on the FLAPW method, allows them to also investigate the
intra-atomic non-collinearity.

Our method uses a “hybrid” approach (Fig.4.2) where the magnetization
is treated as a continuous vector field in the interstitial and in the vacuum
regions, while inside each muffin-tin sphere we only allow for one direction of
magnetization. Like in the collinear case, it is still possible to work with V↑

and V↓ in the non-collinear case, since we restrict the magnetization to the lo-
cal quantization quantization axis. Therefore, a local spin-space coordinate-
frame is introduced with the z-axis parallel to the local quantization axis. V↑

and V↓ are now spin-up and -down with respect to the local axis. Since both,
the potential and the basis functions, are set up in terms of the local spin-
coordinate frame, the determination of the basis functions and calculation of
the integrals of these functions with the Hamiltonian inside the muffin-tins
is completely unchanged. The changes come in, when the basis functions
inside the muffin-tins are matched to the plane waves in the interstitial re-
gion, because the local spin-coordinate frame Sα is rotated with respect to
the global frame Sg.

The FLAPW method uses augmented plane waves as basis functions.
Therefore, each basis function can be uniquely identified by is wave vector
G and the spin direction. The basis functions in the interstitial region are:

ei(k+G)rχg
σ (4.19)

χg
σ is a two component spinor. The index g has been added to notify that χg

σ is
the representation of this spinor in the global spin frame. This representation
of the basis functions is used for both collinear and non-collinear calculations.
However, the potential matrix V, and thus the Hamiltonian, is diagonal in

1Within the muffin-tin spheres, however, magnetization can vary in magnitude
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Figure 4.2: Schematic illustration of the representation of the non-collinear
magnetization density within the present approach. The magnetization is
treated as a continuous vector field in the interstitial region and in the vac-
uum. Within each muffin-tin the magnetization has a fixed direction and can
only vary in magnitude.

the two spin directions in the collinear case. Therefore, the Hamiltonian
can be set up and solved separately for the two spin directions. In the non-
collinear case the off-diagonal part of V is not zero anymore. Hence, the full
Hamiltonian for both spin directions has to be set up and solved in a single
step. In the vacuum we also use the global spin frame for the representation of
the basis functions. The basis set is only changed in the muffin-tins, because
we use a local spin coordinate frame, which is rotated with respect to the
global frame. The consequence is that, when the plane waves are matched to
the functions in the muffin tin spheres, each spin direction in the interstitial
region has to be matched to both, the spin-up and -down basis functions, in
the sphere. Thus, the basis set has the following form.

ϕG,σ(k, r) =



























ei(G+k)r χg
σ Int.

(

AG
σ (k‖)u

G‖
σ (k‖, z) +BG

σ (k‖)u̇
G‖
σ (k‖, z)

)

ei(G‖+k‖)r‖ χg
σ Vac.

∑

σα

∑

L

(

AµG
Lσσα(k)ul(r) +BµG

Lσσα(k)u̇l(r)
)

YL(r̂) χσα MTµ

(4.20)
The sum in the muffin-tins is over the local spin directions and L abbreviates
lm. The A- and B-coefficients depend on the local and the global spin and
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are obtained from the boundary conditions

ei(k+G)rχσ =
∑

σα

∑

L

(

AµG
Lσσα(k)uα

lσα(r) +BµG
Lσσα(k)u̇α

lσα(r)
)

YL(r̂)χαg
σα .

(4.21)
The global spin-coordinate frame Sg can be transformed into the local frame
by a rotation, given by the Euler angles (α, β, 0). In this case, the Euler
angles are equivalent to the polar angles of the local quantization axis in the
global frame, α = ϕ, β = θ. The magnetization density and the magnetic
field, seen from the global frame, mαg(r) and Bαg(r), are related to the same
quantities seen from the local frame by

mαg(r) = Rαgl mαl(r)

Bαg(r) = Rαgl Bαl(r). (4.22)

where the index α indicates, that this corresponds to quantities inside the
muffin-tin of atom type α. The Pauli spinors transform according to

χαg = Uαgl χαl, (4.23)

where

χαl
↑ =

(

1

0

)

, χαl
↓ =

(

0

1

)

(4.24)

is their representation in the local spin frame. The matrices Rαgl and Uαgl

are given with

Rαgl =





cosϕ cos θ − sinϕ cosϕ sin θ
sinϕ cos θ cosϕ sinϕ sin θ
− sin θ 0 cos θ



 , (4.25)

Uαgl =

(

e−i ϕ
2 cos( θ

2
) −e−i ϕ

2 sin( θ
2
)

ei ϕ
2 sin( θ

2
) ei ϕ

2 cos( θ
2
)

)

. (4.26)
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Chapter 5

Describing Magnetic Systems

In the following chapters we will be dealing with magnetic systems. There-
fore, we shortly present here two models describing the magnetic interac-
tions, namely the Stoner and the Heisenberg model. In Sec. 5.3 we will give
a description of a method of calculating the Heisenberg exchange interaction
parameters from the first principles.

5.1 Stoner Model

The one–particle nature of the Kohn–Sham equation makes it possible to
derive a Stoner like theory for ferromagnetism [92, 93, 94, 95], which includes
correlation effects and provides explicit expressions for the Stoner parameter.
Starting point is the assumption, that within the spin-density functional
theory the magnetization density m(r) = |m(r)| of solids is usually small
compared to the electron density n(r). Expanding the exchange correlation
energy εxc(n(r), m(r)) into a Taylor series in terms of the parameter ξ = m/n
yields

εxc(n, ξ) = εxc(n, 0) +
1

2
ε′′xc(n, 0)ξ2 + · · · (5.1)

On taking the derivative of the exchange-correlation energy with respect to
spin-up and spin-down densities,

n↑ = (n +m)/2 ' n(1 + ξ)/2

n↓ = (n−m)/2 ' n(1 − ξ)/2,

(5.2)

the exchange and correlation potential for the two spin directions becomes

µ↑(↓)
xc (r) = V ±

xc (r) = V 0
xc(r) ∓ Ṽxc(r)m(r) (5.3)

45
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Figure 5.1: Graphical solution of (5.10).

(with (+) for ↑ and (−) for ↓), where

V 0
xc = εxc(n, 0) + n

∂εxc(n, 0)

∂n

Ṽxc =
1

n2
ε′′xc(n, 0)m. (5.4)

In the Stoner model this potential shift is expressed in terms of a constant:

V ±
xc (r) = V 0

xc(r) ∓
1

2
IM M =

∫

Vatom

m(r)dr . (5.5)

M is the total magnetic moment per atom, and I is the exchange integral
(Stoner parameter). Because of this constant shift the spatial shape of the
potential remains the same as in the nonmagnetic case. Consequently, the
solutions of the Kohn-Sham equations also remain unchanged, only the single
particle energies εi are shifted by the same amount ∓IM/2,

ψ±
i (r) = ψ0

i (r), ε±i = ε0i ∓
1

2
IM (5.6)

Hence, the whole band structure is spin-split, and the shape of the bands
remains unaltered. As a result, the local densities of states (LDOS) projected
on an atom for the spin-directions ±, n±(ε), are also shifted by ±IM/2.

n±(ε) = n(ε± 1

2
IM) . (5.7)

From this property of the DOS a criterion for the existence of ferromagnetism
can be derived. Integrating the density of states up to the Fermi energy EF
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Metal Na Al Cr Mn Fe Co Ni Cu Pd Pt

n(EF) [(eV)−1] 0.23 0.21 0.35 0.77 1.54 1.72 2.02 0.14 1.14 0.79

I [eV] 1.82 1.22 0.76 0.82 0.93 0.99 1.01 0.73 0.68 0.63

In(EF) [eV] 0.41 0.25 0.27 0.63 1.43 1.70 2.04 0.11 0.78 0.50

Table 5.1: Bulk DOS n(EF) at the Fermi energy (EF) as calculated from
nonmagnetic calculations, the Stoner parameter I, and the product of both,
In(EF). All results are obtained with the density functional theory in the
local density approximation [93, 94].

yields the number of electrons N and the total magnetic moment per atom
M .

N =

∫

ε<EF

[

n(ε +
1

2
IM) + n(ε− 1

2
IM)

]

dε (5.8)

M =

∫

ε<EF

[

n(ε +
1

2
IM) − n(ε− 1

2
IM)

]

dε . (5.9)

The self consistency requirement embodied in (5.9) determines the unknown
Fermi energy and magnetic moment. Requiring charge neutrality the first
equation can be used to obtain the Fermi energy as a function of the mag-
netization EF = EF(M). Substituting this into the second equation leads to
a self consistency problem for M .

M = F (M), with

F (M) =

∫

ε<EF(M)

[

n(ε +
1

2
IM) − n(ε− 1

2
IM)

]

dε . (5.10)

The function F (M) is odd in M , F (0) = 0, and F (M) = −F (−M), it
is a monotonically increasing function, i.e. F ′(0) > 0, and saturates at the
largest possible magnetization ±M∞ = F (±∞). A graphical solution of
(5.10) is illustrated in Fig. 5.1. Two functions F (M), consistent with the
above properties, are plotted. In case A only the trivial nonmagnetic solution
M = 0 is present, whereas in case B three solutions exist, two of which have
non-zero magnetization. From the properties of F (M) follows that (5.10)
always has solutions with non-zero magnetization, if the slope of F ′(0) =
I n(EF) > 1. This is finally the Stoner criterion for ferromagnetism:

I n(EF) > 1 . (5.11)
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The Stoner criterion is an instability condition which expresses the compe-
tition between the exchange interaction in terms of the exchange integral
I which drives the system into ferromagnetism for large I and the kinetic
energy in terms of the DOS which increases in the magnetic states, the more
the wider the band width or the lower the density of states, respectively.
A big exchange integral and a large nonmagnetic DOS at the Fermi energy
favors ferromagnetism. Table 5.1 lists the exchange integral I, the local DOS
at the Fermi energy n(EF) derived from nonmagnetic calculations and the
product In(EF) for a number of elemental metals. It shows, that the Stoner
condition for ferromagnetism is only fulfilled for Fe, Co, and Ni, precisely
those metals that show itinerant ferromagnetism.

5.2 Heisenberg Model and Beyond

To predict the magnetic ground state of a magnetic system can be a highly
nontrivial problem. In cases, for example, where competing exchange inter-
actions between neighboring atoms cannot be satisfied, the exchange interac-
tion is frustrated which gives rise to a multitude of possible spin-structures.
In the past, the magnetism of complex spin structures of itinerant magnets
has been almost exclusively discussed within the framework of model Hamil-
tonians, e.g. the classical Heisenberg Hamiltonian,

H2-spin = −
∑

i,j

i>j

Jij Mi · Mj . (5.12)

The magnetic moments (usually referred to as spins) localized on the lattice
sites i, j are considered as classical vectors M, with the assumption that their
magnitudes M are constant. The exchange interaction between the magnetic
moments is described by the pair interaction Jij. In localized spin systems the
Jij can be safely restricted to the ferromagnetic (J1 > 0) or antiferromagnetic
(J1 < 0) nearest-neighbor (n.n.) interaction, i.e. Jij = 0 for all i, j, except
for Jn.n. = J1. Also in itinerant magnets J1 often dominates over the rest of
the further distant pairs. However, an attempt to reproduce TC solely from
J1 produces results of limited validity.

Exchange interactions beyond the classical Heisenberg model can be mo-
tivated from a perturbation expansion of the Hubbard model [96]. Expand-
ing the Hubbard model into a spin model, replacing the spin operators by
classical spin vectors, a second order perturbation expansion reproduces the
classical Heisenberg model. The fourth order perturbation treatment (the
third order is zero in the absence of spin-orbit interaction) yields two ad-
ditional terms of different form. One is the four-spin exchange interaction
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(4-spin):

H4-spin = −
∑

ijkl

Kijkl

[

(MiMj)(MkMl)+(MjMk)(MlMi)−(MiMk)(MjMl)
]

.

The 4-spin interaction arises from the hopping of electrons over four sites,
i.e. the process 1 → 2 → 3 → 4 → 1, the other term, resulting from the
hopping 1 → 2 → 1 → 2 → 1, is the bi-quadratic exchange:

Hbiquadr = −
∑

ij

Bij(Mi · Mj)
2. (5.13)

The exchange parameters Jij, Kijkl, and Bij depend on the details of the
electronic structure and it is known [97] that for transition-metals the sign
and magnitude are rapidly varying functions of the d-band filling. In thin
films, M4 K1 and M4B1 are about one order of magnitude smaller than
M2J1, which is for example for Mn/Cu(111) about 30 meV. The higher
order spin interactions have then the effect, depending on the sign and value,
of splitting the magnetic states which are degenerate when described by the
2-spin Heisenberg model.

In itinerant magnets, the electrons that are responsible for the formation
of the magnetic state do participate in the formation of the Fermi-surface
and hop across the lattice. Thus, it is by no means clear how far a short-
ranged n.n. interaction or even how far the Heisenberg model, and models
beyond that, can go in giving a sufficiently good description of the physics of
itinerant magnets at surfaces and films. We believe that the combination of
ab-initio calculations and the study of model Hamiltonians provides a pow-
erful approach to investigate the magnetic structures of complex magnetic
systems.

5.3 Ab-initio Calculation of Heisenberg

Exchange Parameters

Magnetic excitations in itinerant ferromagnets are basically of two different
types. One type are the Stoner excitations, in which an electron is excited
from an occupied state of the majority-spin band to an empty state of the
minority-spin band and creates an electron-hole pair. The Stoner excitations
are associated with longitudinal fluctuations of the magnetization. The other
type are the spin-waves (magnons) which correspond to collective transverse
fluctuations of the magnetization direction. Near the bottom of the exci-
tation spectrum, the density of states of magnons is considerably higher
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Figure 5.2: A two-dimensional lattice with a two-atoms basis. Rm(n) are the
lattice translation vectors, while τ α(β) specify the positions of the atoms α, β
within the unit cell.

than that of corresponding Stoner excitations, so that the thermodynam-
ics in the low-temperature regime is completely dominated by magnons and
Stoner excitations can be neglected. Therefore, it seems reasonable to extend
this approximation up to the Curie temperature and to derive an ab initio
technique of finite-temperature magnetism by neglecting systematically the
Stoner excitations.

The time scale of the magnetic moment dynamics is much larger than
the time scale of electrons orbiting around an atom and the time scale of the
interatomic hopping of electrons. Typical magnon energies for a transition
metal are a few tenths of an eV, while the d-band width is a few eV. For this
reason, we adopt the so-called adiabatic approximation (or the frozen magnon
approximation), in which we assume that when the system is evolving from a
state with a certain configuration of the magnetic moments to an other state
with a different moment configuration, the relaxation time of the electronic
processes is simply zero. In other words, we can imagine the evolution of
the system as a series of “snapshots” of different intermediate configurations
(hence the term frozen magnon approximation).

In the attempt to describe the finite temperature effects on the magnetic
structure, we simulate the thermal excitations with spin-spirals, applying a
classical Heisenberg Hamiltonian (Eqn.5.12) to model the magnetic interac-
tions. The part of the total energy (per unit cell) due to these interactions
is then obtained from the expression

EM = − 1

2N

∑

n,m
α,β

(Rmα 6=Rnβ)

MmαMnβ J(Rmα,Rnβ), (5.14)
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where Rmα(nβ) ≡ Rm(n) + τα(β). Here, Rm(n) are the lattice translation
vectors and τ α(β) are the vectors specifying the positions of the atoms within
the unit cell (Fig. 5.2). Mmα(nβ) are the magnetic moments localized at the
sites Rmα(nβ), while J(Rmα,Rnβ) is the exchange coupling constant for the
pair of atoms situated at these sites. The summations using indices n,m are
carried out over all unit cells, and the ones using indices α, β, over all the
atoms in the unit cell. The factor 1/2 takes care of the double counting and
the on-site term (Rmα = Rnβ) is left out.

The constants J(Rmα,Rnβ) contain the information about the inter-cite
interaction due to the exchange coupling. The knowledge of these exchange
interactions is essential for the description of thermal excitations in magnetic
solids and their deriving from ab-initio calculations is the core problem in
the attempt to describe the system with the Heisenberg Hamiltonian. One
popular approach employs the Lichtenstein formula [98], which can be easily
used in case of a Green functions method. We present here an alternative
approach which employs the spin spirals implemented in the FLEUR program,
and goes back to Halilov et al. [47]. In the case of a spin-spiral with the
wave vector q, the magnetic moments are described by Eqn. 4.7. Using this
equation and defining R ≡ Rn − Rm and ταβ ≡ τα − τ β, equation 5.14
becomes

EM (q;Θ;Φ)=−1

2

∑

α,β

R

(R6=ταβ)

MαMβJ(τα,τβ−R){sin θα sin θβ cos[q·(ταβ−R)+φα−φβ]

+cos θα cos θβ}. (5.15)

Here, the energy EM is a function of the spin-spiral vector q, as well as of the
cone and phase angles of the spin vectors on all the atoms of the unit cell.
The dependence on these angles is in the argument of EM expressed with Θ,
for the set of all cone angles {θα} (we remind that the cone angles θα are
defined as the angle between the magnetic moment and the rotation axis)
and by Φ for the set of all phase angles {φα}. To account for the condition
R 6= ταβ under which the sum in Eqn. 5.15 is conducted, from now on we
set J(τ α, τα) ≡ 0, for all the atoms α in the unit cell.

With the aim to obtain the exchange interaction constants J(τ α, τ β −R)
at the minimum of computational expense, we define in the following a set of
expressions which are evaluated computationally. We first define the Fourier
transform

Jαβ(q) =
∑

R

J(τ α, τ β − R)eiq·(τ α,β−R). (5.16)
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It is straightforward to show that with the use of this Fourier transform,
Eqn. 5.15 becomes

EM (q;Θ;Φ)=−1

2

∑

α,β

MαMβ { sin θα sin θβRe
[

Jαβ(q)ei(φα−φβ)
]

+cos θα cos θβJαβ(0)}. (5.17)

Symmetry Relations

Starting from the condition that J(Rmα,Rnβ) are real and symmetric and
the definition of the Fourier transform Jαβ(q) (Eqn 5.16), several useful sym-
metry properties of Jαβ(q) can be derived (valid for each q vector):

1. Jαβ(q) = Jβα(−q)

2. Re [Jαβ(q)] = Re [Jαβ(−q)]

3. Im [Jαβ(q)] = −Im [Jαβ(−q)]

(3a) Im [Jαβ(0)] = 0

(3b) Im [Jαα(q)] = 0

4. Jαβ(q) = Jαβ(Ĉ−1q), Ĉ crystal point group symmetry element.

A very important consequence of the relation 4 is that the q vectors can
be sampled from the irreducible wedge of the Brillouin zone and with the
symmetry transformations Jα,β(q) in the rest of the Brillouin zone can be
obtained. Moreover, due to the relation 1, even if the system does not possess
the inversion symmetry it is not necessary to make two separate calculations
for q and −q. Finally, if the system does possess the inversion symmetry,
due to the relations 3 and 4, all the coefficients Jα,β(q) are real.

5.3.1 The Calculational Scheme

To develop a scheme for the calculation of the Fourier transforms Jα,β(q), we
distinguish three different cases.

• Case 1: θλ = 0, ∀λ

This is the ferromagnetic case. The magnetic moments of all the atoms
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in the unit cell are pointing in the same direction. In this case the spin-
spiral vector has no meaning and the same total energy is obtained for
any q:

E0
M ≡ EM(q; 0, ..., 0; 0, ..., 0) = −1

2

∑

α,β

MαMβJαβ(0). (5.18)

• Case 2: θλ = 0, ∀λ 6= µ; θµ 6= 0

In this case all the atoms in the unit cell are ordered ferromagneti-
cally, except for atom µ. Its magnetic moment is tilted by angle θµ and
the spin-spiral running through the system will move only the magnetic
moments situated on the atoms of the same kind as µ. With the use of
the symmetry relations for the coefficients Jα,β(q) and Eqn. 5.18, the
total energy for this case is found to be

Eµ
M (q)≡EM (q; 0, ..., θµ, ..., 0; 0, ..., 0) =

=E0
M+(1−cos θµ)Mµ

∑

λ

(λ6=µ)

MλJλµ(0)− 1

2
M2

µsin
2θµ [Jµµ(q)−Jµµ(0)] .

(5.19)

Taking q = 0, we obtain

Eµ
M(0) − E0

M = (1−cos θµ)Mµ

∑

λ

(λ6=µ)

MλJλµ(0), (5.20)

and finally, from Eqns. 5.19 and 5.20,

Jµµ(q) − Jµµ(0) = −2
Eµ

M (q) − Eµ
M(0)

M2
µ sin2 θµ

. (5.21)

• Case 3: θλ = 0, ∀λ 6= µ, ν; θµ, θν 6= 0

This case will appear only if there are two or more magnetic atoms
in the unit cell. Keeping the rest of the magnetic moments parallel,
the magnetic moments on atoms µ and ν are tilted by angles θµ and
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θν, respectively, so the spin-spiral running through the system changes
the orientation of magnetic moments on both of these atoms. Defining
φµν ≡ φµ − φν, using Eqns. 5.18, 5.19 and the symmetry relations for
Jαβ(q), we obtain the total energy as

Eµν
M (q, φµν)≡EM (q; 0, ..., θµ, ..., θν, ..., 0; 0, ..., φµ, ..., φν, ..., 0) =

=Eµ
M (q)+Eν

M(q)−E0
M−MµMν

{

sinθµsinθνRe
[

Jµν(q)eiφµν
]

+(1−cos θµ)(1−cos θν)Jµν(0)}.
(5.22)

As we have seen, if the system does not possess inversion symmetry,
the coefficients Jµν(q) are complex for µ 6= ν. Their imaginary part
can be obtained as

Im [Jµν(q)] = −Re
[

Jµν(q)ei π
2

]

. (5.23)

For q = 0, from Eqn. 5.23 and symmetry relation (3a), we obtain

Re
[

Jµν(0)ei π
2

]

= −Im [Jµν(0)] = 0, (5.24)

which together with Eqn. 5.22 yields

Eµν
M (0,

π

2
)−Eµ

M(0)−Eν
M(0)+E0

M =−MµMν(1−cos θµ)(1−cos θν)Jµν(0).

(5.25)

Putting this result back into Eqn. 5.22, for a configuration of spins in
which φµν = 0 we obtain the expression for the real part of Jµν(q),

Re[Jµν(q)]=
Eµν

M (0, π
2
)−Eµν

M (q, 0)+[Eµ
M(q)−Eµ

M(0)]+[Eν
M(q)−Eν

M(0)]

MµMν sin θµ sin θν

,

(5.26)
while for a configuration of spins in which φµν = π/2, the expression
for the imaginary part emerges:

Im[Jµν(q)]=
Eµν

M (q, π
2
)−Eµν

M (q, 0)

MµMν sin θµ sin θν

−Re[Jµν(q)] . (5.27)
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5.3.2 The Brillouin Zone Integration

We have established now that the Fourier transforms Jµν(q) can be obtained
from the differences in total energy between the states having specified mag-
netic configurations. Armed with Eqns. 5.21, 5.26 and 5.27 we are now ready
to calculate the Heisenberg exchange coupling constants, J(τ µ, τ ν − R).
First, however, one has to take into account that from the Eqn. 5.21 it is
only possible to calculate the difference Jµµ(q) − Jµµ(0), but not the coeffi-
cient Jµµ(q) alone. This problem can be easily bridged by introducing the
coefficients J̃µν(q), defined as

J̃µν(q) ≡ Jµν(q) − δµνJµν(0). (5.28)

Also, for simplicity, the non-zero cone angles can in all calculations be taken
to have the same value θ. The Eqns. 5.21, 5.26 and 5.27 can now be re-written
as

J̃µµ(q) = −2
Eµ

M(q) − Eµ
M (0)

M2
µ sin2 θ

(5.29)

Re
[

J̃µν(q)
]

=
Eµν

M (0, π/2) − Eµν
M (q, 0)

MµMν sin2 θ
− 1

2

Mµ

Mν

J̃µµ − 1

2

Mν

Mµ

J̃νν (5.30)

Im
[

J̃µν(q)
]

=
Eµν

M (q, π
2
)−Eµν

M (q, 0)

MµMν sin2 θ
−Re

[

J̃µν(q)
]

. (5.31)

All one has to do now to obtain the exchange coupling constants in the real
space is integrate. With the use of the relation (VBZ is the volume of the
first Brillouin zone)

∫

VBZ

eiq·rd3q =

{

0, for r 6= 0
VBZ , for r = 0

, (5.32)

along with the Eqns. 5.16 and 5.28 it is easy to see that

J(τ µ, τ ν − R) =
1

VBZ

∫

VBZ

J̃µν(q) e−iq·(τ µν−R)d3q. (5.33)

Finally, from the definition 5.28 it is clear that J̃µν(q) satisfies the same

symmetry relations as the coefficients Jµν(q), so that J̃µν(q) =
[

J̃µν(−q)
]∗

and the integral 5.33 becomes

J(τ µ, τ ν − R) =
2

VBZ

∫

VBZ
2

{

Re
[

J̃µν(q)
]

cos[q · (τ µν − R)]

+Im
[

J̃µν(q)
]

sin[q · (τ µν − R)]
}

d3q, (5.34)
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where the integration is conducted only over one half of the Brillouin zone.
To estimate the computational effort needed to obtain the exchange in-

teraction constants, we will consider the following cases:

• Let us first assume that there is only one magnetic atom in the unit
cell. In this case, the difference of the total energies in Eqn. 5.29 is
essentially just the difference between the spin-spiral with the wave
vector q and the ferromagnetic state (i.e. the magnon energy). To
calculate the exchange interaction constants J(τ µ, τ µ − R) we need,
besides the energy of the ferromagnetic state, only one calculation per
q point, i.e. in total (1 +Nq) calculations, where Nq is the number of
q points for which the calculations are performed.

• Now let us consider a system with more than one magnetic atom in the
unit cell, but which possesses inversion symmetry. In the case of two or
more magnetic atoms per unit cell, the energy Eµ

M(0) in the Eqn. 5.29
is no longer equal to the energy of the ferromagnetic state. In this
case we will have to calculate this energy once for each magnetic atom.
Also for each q point then we calculate the energy Eµ

M (q) for each
magnetic atom. If there are Nm magnetic atoms in the unit cell and
the calculations are performed on Nq q-points, this makes (1+Nq)Nm

calculations. Now we have the constants J̃µµ(q). In the systems with
inversion symmetry, we will additionally have to calculate only the
real part of J̃µν(q) (Eqn. 5.30), since the imaginary part is zero. To
do this we will also need one calculation per pair of magnetic atoms
to calculate the energies Eµν

M (0, π/2), plus one calculation per pair of
magnetic atoms for each q-point to determine the energies Eµν

M (q, 0),
which makes (1 +Nq)(Nm − 1)Nm/2 additional calculations. In total,
for the systems with inversion symmetry this gives (1 +Nq)Nm + (1 +
Nq)(Nm − 1)Nm/2 = (1 +Nq)(1 +Nm)Nm/2 calculations.

• If the system does not possess inversion symmetry, in addition to
the previous calculations one has to perform an additional calculation
per pair of magnetic atoms for each q point to determine the energy
Eµν

M (q, π/2). This means we have to perform additional NqNm(Nm −
1)/2 calculations. Therefore, for the systems without inversion symme-
try this makes NqNm(Nm − 1)/2 + (1 +Nq)(1 +Nm)Nm/2 = Nm(1 +
Nm + 2NmNq)/2 calculations in total.

The described calculations can be very time consuming, since they involve the
determination of energies differences which are in general quite small (typi-
cally of the order of a few mRy), which means that a sufficient accuracy has
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to be achieved requiring bigger basis sets and finer k point meshes. The size
of the q point set one should use depends on the chosen distance between the
two atoms for which the interaction constant is being calculated. If the ener-
gies needed here would be calculated self-consistently, this would mean that
to get a reliable result one would have to spend months on these calculations!
Fortunately, in most of the cases of interest the spin-spiral can be considered
a small perturbation and Andersen’s force theorem (Subsection 2.2.2) can
be used to calculate the energy differences.
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Chapter 6

Half-Metallic Ferromagnets

The origin of the term half-metallic ferromagnets lies in the specific electronic
structure of these materials. Its main characteristic is that the two spin bands
have a completely different behavior. While the majority spin band (referred
to also as spin-up band) shows the typical metallic behavior, the minority
spin band (spin-down band) is semiconducting (Fig. 6.1). Therefore, the
spin-polarization at the Fermi level is 100%! This property has brought the
half-metallic ferromagnets into the focus of many investigations, since they
are the ideal candidates for applications in spin-electronic devices [4].

In this chapter some characteristics and the mechanism which opens the
gap in the minority spin band will be discussed in more detail for the classes of
half- and full-Heusler alloys, and the zinc-blende compounds of the transition
metals with group V and VI elements. The structures which are adopted by
these compounds are shown in Fig. 6.2. Commonly, their lattices can be
seen as 4 intersecting fcc lattices. In the full-Heusler alloys, all 4 sublattices
are occupied. This is known as L21 structure, described by the formula

F

Half-metalMetal

Semiconductor

EE F

D
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f 

S
ta

te
s Spin Up

Spin Down

Figure 6.1: Schematic representation of the density of states for a half-metal
with respect to normal metals and semiconductors.
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Figure 6.2: L21, C1b and zinc-blende structure. The lattice is consisted of
4 intersecting fcc. lattices. The unit cell is that of a fcc lattice with four
atoms as basis at the positions: X at a( 1

4
1
4

1
4
) and a(3

4
3
4

3
4
), Y at a(000) , and

Z at a(1
2

1
2

1
2
) in Cartesian coordinates, a being the lattice parameter of the

cubic unit cell. In the case of the full Heusler alloys (L21 structure) all the
sites are occupied, in half-Heusler alloys (C1b structure) one of the X-sites is
unoccupied, while in zinc-blende structure one of the X-sites and the Y-site
are unoccupied (note that this is equivalent to the case when the other one
of the two X-sites and the Z-site are unoccupied). If all atoms were identical,
the lattice would be simply the bcc.

X2YZ. A material which adopts this structure is for instance Co2MnSi. The
half-Heusler alloys crystallize in C1b structure in which three of the four
sublattices are occupied (formula XYZ). An example is the aforementioned
alloy NiMnSb. Finally, the zinc-blende structure, which is adopted by many
semiconductors (e.g. GaAs), is the one in which two of the sublattices are
occupied (i.e. the formula is XZ), and this is the structure of the half-metallic
CrTe.

Due to the spin-down gap around Fermi energy (EF ), half metallic ferro-
magnets present in principle a number of exotic properties such as:

• DC conductance of only the spin-up electrons, since conductance is a
Fermi level property

• Integer spin moment per unit formula

• Zero longitudinal spin susceptibility, since a band shift by a magnetic
field will not alter the occupation of spin-up and -down states.

• Exponential decay with distance of the Heisenberg exchange constants
Jij(Ri − Rj).



Half-Heusler Alloys 61

6.1 Half-Heusler Alloys

6.1.1 Electronic Structure and Origin of the Gap

In the following, a few examples of the half-Heusler alloys will be presented
and their electronic structure examined in order to get a deeper insight into
the processes which govern the opening and the size of the gap in the minority
spin direction. The calculations were done with the use of the generalized
gradient approximation (GGA) for the exchange correlation potential, as

Figure 6.3: Atom-resolved density of states (DOS) of NiMnSb. The zero
energy value corresponds to the Fermi level EF

given by Perdew et al. [99] With the use of GGA, the equilibrium lattice
constants obtained for these compounds (Table 6.1) are usually up to 1%
higher than the experimental ones.

A typical density of states (DOS) for a half-metallic half-Heusler com-
pound is shown in figure 6.3. This is the DOS of NiMnSb, the half-metal
discovered in 1983 by de Groot [2]. The total DOS is shown in black lines, and
separately are given the local contributions to the density of states (LDOS)
on the Ni-site (green), the Mn-site (blue) and the Sb-site (red). The positive
part of the abscissa stands for the spin-up DOS, while the negative one shows
the DOS of the spin-down band. The DOS of NiMnSb has contributions from
4 different bands: Each Sb atom with the atomic configuration 5s25p3 intro-
duces a deep lying s band, located at about −12eV, and three p-bands in the
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Figure 6.4: Schematic illustration of the origin of the gap in the minority
band of the half-Heusler alloys. The energy levels Eb of the energetically
lower lying bonding hybrids are separated by the levels Eab of the antibonding
hybrids by a gap, such that only the bonding states are occupied.

region between −6 and −3eV. The main characteristic of the LDOS of Mn
d electrons is a large exchange splitting, which pushes the majority and the
minority spin bands apart. The majority Mn states lie at the lower energies,
where they hybridize with the sp orbitals of Sb and the d orbitals of Ni. In
the minority band, the lower lying d states of Ni hybridize with the Mn d
spin-down states of higher energy, forming hybrids of bonding type under
the Fermi level, with a peak at −2 eV, and the antibonding ones above it,
with a peak at 1.1 eV. The bonding hybrids are of mostly Ni character with
a small Mn admixture, while the the antibonding empty ones have mostly
Mn character with a small admixture of Ni states. This small Ni DOS above
the Fermi level in the minority spin band is responsible for the magnetic mo-
ment situated on Ni atom. Between these bonding and antibonding hybrid
states, the gap opens [10]. The described hybridization in the minority band
is schematically illustrated in Fig. 6.4.

From the first-principles calculations, the gap in the minority band of
NiMnSb of approximately 0.4 eV is obtained. This value is in good agreement
with the experiments of Kirillova and collaborators [28], who estimated the
same value from the analysis of their infrared spectra. Although the local
density approximation (LDA) and the generalized gradient approximation
(GGA) strongly underestimate the values of the gaps in semiconductors, the
minority gap in the half-metallic systems is much better described by the
LDA and GGA since in these systems the screening is metallic.

The gap in the half-metallic C1b compounds is normally an indirect gap,
with the maximum of the valence band at the Γ point and the minimum
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Figure 6.5: The bulk bandstructure of NiMnSb, along the high symmetry
lines of the first Brillouin zone of an fcc lattice. The upper panel presents
the bandstructure in the majority spin direction, while the lower one presents
the bandstructure in the minority spin direction, with the (indirect) gap at
the Fermi level (EF ).

of the conduction band at the X-point. The bandstructure of NiMnSb is
presented in the Fig. 6.5.

In the Fig. 6.6, atom-resolved densities of states of the half-Heusler alloys
with formula XYSb are shown, where X stands for Ni, Pd, or Pt (green lines)
and Y stands for V, Cr or Mn (blue lines). The LDOS of Sb is plotted with
red lines, and the total DOS with the black ones. All the calculations were
performed at the equilibrium lattice constants of each material (Table 6.1).
The comparison of the densities of states provides information about the
chemical trends. First, all of them present a larger or smaller gap in the
minority spin band, although this gap is not at the Fermi level in all the
cases. All compounds present a very high spin-polarization at the Fermi
energy, but the truly half-metallic ones are only three: NiVSb, PtVSb and
NiMnSb.

When changing the Y-atom from V to Cr and then to Mn, the ex-
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Figure 6.6: Atom-resolved densities of states of the half-Heusler alloys with
formula XYSb, X=Ni, Pd, Pt, Y=V, Cr, Mn. With red lines, LDOS of Sb is
plotted, blue lines stand for V, Cr, or Mn LDOS, while the green lines present
the LDOS of Ni, Pd and Pt. The black lines stand for the total DOS.
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Figure 6.7: Atom-resolved densities of states of the half-Heusler alloys with
formula XMnSb, X=Fe, Co, Ni. LDOS of Sb - red lines, LDOS of Mn - blue
lines, LDOS of Fe, Co, Ni - green lines. The black lines stand for the total
DOS.

change splitting becomes larger, and the majority states of these atoms shift
lower, accommodating more electrons in the majority band, and hybridizing
stronger with the lower lying states of X-atom. The minority states of Y
atom remain unoccupied, so the magnetic moment rises by approximately
1 µB (Table 6.1) when Y is changing to the next element to the right.

When the X-atom is changing from Ni to Pd and then to Pt, there are
two counteracting mechanisms influencing the size of the gap. First, the
lattice constant is becoming bigger, which takes the X and Y atoms further
apart and reduces the hybridization between them. A weaker hybridization
means a smaller gap. On the other hand, the 4d orbitals of Pd are more
extended than the 3d of Ni, and the 5d of Pt are more extended than the
4d of Pd. The more extended orbitals hybridize stronger and this means
a larger gap. In the Fig. 6.6 we see that the difference in the size of the
gap is noticeable when switching from PdYSb to PtYSb compounds, while
it remains approximately the same for NiYSb and PdYSb. It is easy to
understand this if we notice that the difference in the lattice constant between
NiYSb and PdYSb compounds is typically around 5% (Table 6.1), while this
difference for PdYSb and PtYSb compounds is just around 0.5%. Therefore,
the effect of the stronger hybridization because of the stronger delocalization
of the d orbitals of higher shells is totally compensated by the larger lattice
constant in PdYSb compounds, while in the PtYSb compounds the former
prevails.

The effect of the change of X-atom from Fe to Co to Ni in the XMnSb
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compounds is shown in Fig. 6.7. This change has a similar result like the
change of the Y-atom in XYSb compounds (Fig. 6.6), namely, when switch-
ing from an X-atom to the next one on its right, the Fermi level shifts,
allowing for the accommodation of one more electron in the majority band
of the compound, while the antibonding states in the minority band remain
unoccupied, giving rise to a change of the magnetic moment by 1 µB. Since
the lattice constant of NiMnSb is somewhat bigger than that of FeMnSb
and CoMnSb, which themselves differ very little (Table 6.1), the gap in the
minority band of NiMnSb is smaller then in the latter two compounds, due
to the weaker hybridization.

The Role of the sp-Element

While the sp-elements are not responsible for the existence of the minority
gap, they are nevertheless very important for the physical properties of the
Heusler alloys and the structural stability of the C1b structure. A careful
discussion of the bonding in these compounds has been recently published
by Nanda and Dasgupta [100] using the crystal orbital Hamiltonian popula-
tion (COHP). For the semiconductor FeVSb they find that while the largest
contribution to the bonding arises from the V-d – Fe-d hybridization, con-
tributions of similar size arise also from the Fe-d – Sb-p and the V-d – Sb-p
hybridization. Similar results are also valid for NiMnSb. Since the majority
d-band is completely filled, the major part of the bonding arises from the
minority band.

The Sb atom has 5 valence electrons (5s2, 5p3), and in the half-Heusler
compounds it introduces a deep lying s-band (in NiMnSb, Fig. 6.3, at about
−12 eV) and three p-bands below the center of the d-bands. These bands
accommodate a total of 8 electrons per unit cell, so that formally Sb acts as a
triple charged Sb−3 ion. Analogously, a Te-atom behaves in these compounds
as a Te−2 ion and an Sn-atom as an Sn−4 ion. This does not mean, that
locally such a large charge transfer exists. In fact, the s- and p-states strongly
hybridize with the transition metal d-states and the charge in these bands is
delocalized. What counts is that the s- and p-bands accommodate 8 electrons
per unit cell, thus effectively acting as reservoir and reducing the d-charge of
the transition metal atoms.

In the Fig. 6.8, the change in XVSb (X=Ni, Pd, Pt) compounds made
by substituting the (group V) Sb atom by the (group VI) Te atom is investi-
gated. The first observation is that not much has changed around Fermi level,
except, of course, for a small shift to accommodate the additional electron.
The change appears mostly in the lower lying bands, which are hybrids of the
transition metals’ d-states and the p-states of Sb (Te), lying at the energies
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Figure 6.8: The comparison of DOS of XVSb and XVTe half-Heusler com-
pounds, with X=Ni, Pd, Pt (green lines). LDOS of V is presented with blue
and the one of sp atom (Sb, Te) with red lines. The total DOS is plotted in
black lines.

of 6-4 eV under the Fermi level. The atom of Te is more electronegative than
the Sb one, so its p-states lie lower in energy. Since the mentioned states have
the highest admixture of the sp atom states they will be the ones strongly
affected by the change of this atom, and will shift lower in Te-compounds.

The size of the gap in the minority band can be influenced by the sp
atom indirectly. This is shown in Fig. 6.9, where the DOS of the compounds
CoCrP and CoCrSb is depicted. Both P and Sb are group V elements, P
being a much smaller atom, with considerably larger electronegativity. The
effect of the electronegativity is, as in the previous case, reflected in the shift
of the bands to the lower energies, but the most striking difference in the
two densities of states is the size of the gap, which is almost twice larger in
the P-compound. The reason for this is just the very simple one, namely,
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Figure 6.9: The comparison of DOS of CoCrP and CoCrSb half-Heusler
compounds. With green lines - LDOS of Co, blue lines - LDOS of Cr, red
lines - LDOS of the sp atom (P, Sb), black lines - the total DOS.

since the P-atom is much smaller than the Sb atom, the lattice parameter of
the P-compound is much smaller that that of the Sb-compound (Table 6.1).
The consequence of the smaller lattice parameter is a stronger hybridization
of the d-states of Co and Cr and, therefore, a larger gap.

6.1.2 The magnetic moment of the half-Heusler com-

pounds

The total number of valence electrons, Z, is given by the sum of the number
of spin-up (N↑) and spin-down (N↓) electrons, while the total moment, Mt,
is given by their difference:

Z = N↑ +N↓ , Mt = N↑ −N↓ → Mt = Z − 2N↓. (6.1)

Consider the case of NiMnSb, which has 22 valence electrons per unit cell,
10 from Ni, 7 from Mn and 5 from Sb. Since, due to the gap at EF , in
the minority band exactly 9 bands are fully occupied (1 Sb-like s band,
3 Sb-like p bands and 5 Ni-like d bands) accommodating 9 electrons per
unit cell, the majority band contains 22 − 9 = 13 electrons, resulting in
a moment of exactly 4 µB per unit cell. Since in all the half-metallic half-
Heusler compounds 9 minority bands are fully occupied, we obtain the simple
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Figure 6.10: The DOS of the semiconductor CoTiSb. With green lines -
LDOS of Co, blue lines - LDOS of Ti, red lines - LDOS of Sb, black lines - the
total DOS.

rule of 18 [10]:

Mt = Z − 18. (6.2)

Equation 6.2 suggests that among the half-Heusler alloys there are also some
non-magnetic semiconductors, with 18 valence electrons. Such semiconduc-
tors do exist, and the DOS of one of them, CoTiSb, is depicted in Fig. 6.10.
Semiconducting are also CoZrSb, FeVSb and NiTiSn. The gaps of these
semiconductors are approximately 0.8 eV in CoTiSb and CoZrSb, 0.36 eV in
FeVSb and 0.14 eV in NiTiSn [9].

It is obvious that if the compound is half-metallic, its total magnetic
moment should be integer. For the compounds in which the Fermi level is
at the edge of the gap, with some small DOS at the Fermi level, we expect
the relation 6.2 to be valid only approximately. In the table 6.1, the total
magnetic moments of some half-Heusler compounds are shown. The rule
of 18, Eqn. 6.2, is reproduced for all the half-metallic compounds, namely
NiVSb, PtVSb, FeMnSb, CoCrSb, CoCrP with the total magnetic moment
of 2 µB, CoMnSb, PdVTe with the total magnetic moment of 3 µB, NiMnSb
with the total magnetic moment of 4 µB and for the semiconducting non-
magnetic CoTiSb. We will see in the next two sections that similar rules can
be deduced also for other half-metallic compounds.
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alloy aopt MX MY MZ Mt
(XYZ) (Å) (µB) (µB) (µB) (µB)

Z
=

18

CoTiSb 5.894 0 0 0 0

Z
=

20

NiVSb 5.903 0.096 1.783 −0.061 2.000
PdVSb 6.205 −0.010 2.010 −0.113 2.015
PtVSb 6.238 −0.017 1.955 −0.070 2.000
FeMnSb 5.844 −1.023 3.021 −0.029 2.000
CoCrSb 5.820 −0.394 2.372 −0.081 2.000
CoCrP 5.345 −0.020 1.940 −0.064 2.000

Z
=

21

NiCrSb 5.896 0.012 2.997 −0.119 3.061
PdCrSb 6.193 −0.023 3.317 −0.150 3.328
PtCrSb 6.226 −0.062 3.200 −0.116 3.196
CoMnSb 5.820 −0.129 3.215 −0.086 3.000
NiVTe 5.988 0.205 2.367 −0.023 2.968
PdVTe 6.314 0.043 2.658 −0.069 3.000
PtVTe 6.341 0.048 2.514 −0.004 2.952

Z
=

22

NiMnSb 5.914 0.262 3.703 −0.063 4.000
PdMnSb 6.229 0.095 4.021 −0.097 4.080
PtMnSb 6.240 0.111 3.918 −0.074 4.012

Table 6.1: The (GGA) optimized lattice constants aopt, the magnetic mo-
ments in the muffin-tin spheres of atoms X, Y, Z (MX,Y,Z), and the total mag-
netic moment per unit cell, Mt, of several half-Heusler compounds (XYZ),
with Z valent electrons in the unit cell.

6.2 Full Heusler Alloys

The second family of Heusler alloys are the full-Heusler alloys. Here, in
particular compounds containing Co and Mn will be presented, as these are
the full-Heusler alloys that have attracted most of the attention. They are
all strong ferromagnets with high Curie temperatures (above 600 K) and,
with exception of Co2MnAl, they show very little disorder [6]. They adopt
the L21 structure shown in figure 6.2. Each Mn or sp atom has eight Co
atoms as first neighbors, sitting at the octahedral symmetry positions, while
each Co atom has four Mn and four sp atoms as first neighbors and thus the
symmetry of the crystal is reduced to the tetrahedral one. The Co atoms
occupying two different sublattices are equivalent, as the environment of one
sublattice is the same as the environment of the second one but rotated
by 90o. The occupancy of two fcc sublattices by Co (or in general by X)
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Figure 6.11: Atom-resolved densities of states of the full-Heusler alloys with
formula Co2MnZ, Z=Si, Ge, Sn. LDOS of Si, Ge, Sn - red lines, LDOS of
Mn - blue lines, LDOS of Co - green lines. The black lines stand for the total
DOS.

atoms distinguish the full-Heusler alloys with the L21 structure from the
half-Heusler compounds with the C1b structure, like e.g. CoMnSb, where
only one sublattice is occupied by Co atoms and the other one is empty.
Although in the L21 structure the Co atoms are sitting on second neighbor
positions, their interaction is important for the magnetic properties of these
compounds.

In figure 6.11 the densities of states of the full-Heusler compounds Co2MnSi,
Co2MnGe, and Co2MnSn are shown (all the calculations were done at the
(GGA) optimized lattice constants of the compounds, Table 6.2). The va-
lence band extends up to around 7 eV below the Fermi level and the spin-up
DOS shows a large peak just below the Fermi level for these compounds.
This picture was also verified in the photoemission experiments on Co2MnSn
by Brown et al. [101]. The gap in the minority band is indirect, with the
maximum of the valence band at Γ and the minimum of the conduction band
at the X-point (Fig 6.12), like in the case of half-Heusler alloys.

6.2.1 Origin of the Gap and Magnetism of Full-Heusler

Alloys

In the full-Heusler alloys, like in the half-Heusler alloys, the four sp-bands
are located far below the Fermi level, and play no role in forming the gap.
As an example, we discuss here the alloy Co2MnGe. The states responsible
for the gap are the d states of the Mn atom and of the two Co atoms. In
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Figure 6.12: The bulk bandstructure of Co2MnSi, along the high symmetry
lines of the first Brillouin zone of an fcc lattice. The upper panel presents
the bandstructure in the majority spin direction, while the lower one presents
the bandstructure in the minority spin direction, with the (indirect) gap at
the Fermi level (EF ).

order to obtain a simple picture of the mechanisms involved, only the d-states
at the Γ point, which show the full structural symmetry, are considered. A
thorough analysis, relaying on the group theory, can be found in the work of
Galanakis et al. [11]. The Co atoms form a simple cubic lattice and the Mn
atoms (also the sp atoms) occupy the body centered sites of this lattice and
have 8 Co atoms at the nearest neighboring sites. The hybridization which
takes place is sketched in figure 6.13. It can, for a better understanding, be
divided into two contributions.

• Co-Co
Although the distance between the Co atoms is a second neighbor dis-
tance, the hybridization between these atoms is qualitatively very im-
portant. The 5 d orbitals are divided into the twofold degenerate d4, d5

(z2, x2 − y2) and the threefold degenerate d1, d2, d3 (xy, yz, zx) states
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Figure 6.13: Schematic illustration of the origin of the gap in the minority
band in full-Heusler alloys.

(Fig. 6.13 left). The eg orbitals (t2g orbitals) can only couple with the
eg orbitals (t2g orbitals) of the other Co atom forming bonding hybrids,
denoted by eg (or t2g) and antibonding orbitals, denoted by eu (or t1u).
The coefficients in front of the orbitals give the degeneracy.

• Co-Co-Mn
In a second step we consider the hybridization of the Co-Co orbitals
with the Mn d-orbitals (Fig 6.13 right). The doubly degenerated eg

orbitals hybridize with the d4 and d5 of the Mn, which transform ac-
cording to the same irreducible representation of the symmetry group.
They create a double degenerated bonding eg state that is very low
in energy and an antibonding one that is unoccupied and above the
Fermi level. The 3 × t2g Co orbitals couple to the d1,2,3 of the Mn and
create 6 new orbitals, 3 of which are bonding and are occupied and the
other three are antibonding and high in energy. Finally the 2× eu and
3× t1u Co orbitals cannot couple with any of the Mn d orbitals as these
are not transforming with the u representations and are orthogonal to
the Co eu and t1u states. With respect to the Mn and the Ge atoms
these states are therefore non-bonding. The t1u states are below the
Fermi level and they are occupied while the eu are just above the Fermi
level.Thus in total 8 minority d bands are filled and 7 are empty.

To summarize, among the minority-spin states all 5 Co-Mn bonding bands
are occupied and all 5 Co-Mn antibonding bands are empty, and the Fermi
level falls in between the 5 non-bonding Co bands, such that the three t1u
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alloy aopt MCo MMn MZ Mt
(Co2MnZ) (Å) (µB) (µB) (µB) (µB)

Z
=

28 Co2MnAl 5.688 0.784 2.664 −0.092 4.024
Co2MnGa 5.715 0.765 2.742 −0.076 4.115

Z
=

29

Co2MnSi 5.627 1.058 2.975 −0.061 5.000
Co2MnGe 5.732 1.014 3.057 −0.048 5.000
Co2MnSn 5.994 0.981 3.210 −0.057 5.038

Table 6.2: The (GGA) optimized lattice constants aopt, the magnetic mo-
ments in the muffin-tin spheres of atoms Co, Mn, Z=Al, Ga, Si, Ge, Sn
(MCo,Mn,Z), and the total magnetic moment per unit cell, Mt, of several full-
Heusler compounds of type Co2MnZ (Z=Al, Ga, Si, Ge, Sn), with Z valent
electrons in the unit cell.

bands are occupied and the two eu bands are empty. The maximal moment
of the full Heusler alloys is therefore 7 µB per unit cell, which is achieved, if
all majority d-states are occupied.

It should be also mentioned that the LDOS of Mn clearly shows a much
bigger gap at EF (Figs. 6.11, 6.14) than the one of the whole compound.
The real gap is determined by the Co-Co interaction or, more precisely, by
the t1u − eu splitting.

In the previous section it was shown that the moment of the half-metallic
half-Heusler compounds follows the rule of 18. A similar rule can be deduced
for the full-Heusler alloys. In the Table 6.2, the calculated magnetic moments
of several full-Heusler alloys of the type Co2MnZ (Z=Al, Ga, Si, Ge, Sn) are
given. The compounds containing Al and Ga (Fig 6.14) have 28 valence
electrons and the ones containing Si, Ge and Sn 29 valence electrons. The
first compounds have a total spin moment close to 4µB and the second ones
close to 5 µB which agrees with the experimentally deduced moments of these
compounds [102]. The total spin moment, Mt, is related to the total number
of valence electrons, Z, by a simple relation (the rule of 24 ) [11],

Mt = Z − 24. (6.3)

This rule arises from the fact that the minority band contains 12 electrons
per unit cell: 4 are occupying the low lying s and p bands of the sp element
and 8 the Co-like minority d bands (2× eg, 3× t2g and 3× t1u), as explained
above (Fig. 6.13). Since 7 minority bands are unoccupied, the largest possible
moment per unit cell is 7 µB and occurs when all majority d-states are
occupied.
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Figure 6.14: Atom-resolved densities of states of the full-Heusler alloys with
formula Co2MnZ, Z=Al, Ga. LDOS of Al, Ga - red lines, LDOS of Mn - blue
lines, LDOS of Co - green lines, total DOS - black lines

6.3 Zinc-blende Half-metallic Compounds

Compounds consisting of 3d and sp elements, though unstable (or metastable)
in zinc-blende (zb) structure, are lately being successfully grown on zb semi-
conductors. For instance, binary CrAs in the zinc-blende (zb) structure was
grown epitaxially on GaAs; this compound was found to be half metallic,
both by experiment and by relevant calculations [24]. It has also the ad-
vantage of a Curie temperature TC , higher than room temperature, at least
400 K [103]. Similar is the case for ferromagnetic zb CrSb [104]. Moreover,
the growth of nanoscale zb MnAs dots on GaAs substrates [105] has been
achieved and CrAs/GaAs multilayers have been fabricated [106]. In Fig. 6.15
the densities of states of a few zb half-metals are presented. The compounds
on the left, VTe and CrAs, possess 11 valent electrons and a magnetic mo-
ment of 3 µB, while the ones on the right, MnSb and CrTe, have 12 valent
electrons and a magnetic moment of 4 µB per unit cell. Like in the case of
the full- and half-Heusler alloys, all the calculations were performed at the
(GGA) equilibrium lattice constant of the compounds (Table 6.3).
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Figure 6.15: Atom-resolved densities of states of some of the zb compounds
with formula YZ, where Y=V, Mn, Cr and Z=As, Sb, Te. LDOS of the
Y-atom is shown in blue lines, LDOS of Z-atom in red lines and the black
lines show the total DOS.

6.3.1 Origin of the gap and Magnetism of Zinc-blende

Half-metallic Compounds

In the description of the origin of the gap in the minority band of the zb
compounds, it is convenient, like in the case of the full-Heusler alloys, to
concentrate on the states at the Γ point (k = 0), since they possess the full
crystal symmetry.1 In the zb structure, the tetrahedral environment allows
the t2g states (dxy, dyz, and dxz) of the 3d atom to hybridize with the p states
of the four first neighbors (the sp atoms), since in the tetrahedral geome-

1Although for arbitrary k the wavefunctions do not belong exclusively to a single irre-
ducible representation such as t2g or eg, it is convenient to retain this terminology for the
bands formed by originally t2g or eg orbitals since they are energetically rather separated.
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Figure 6.16: Schematic illustration of the origin of the gap in the minority
band of the zinc-blende compounds. The energy levels Eb of the energetically
lower lying bonding hybrids are separated by the levels Eab of the antibonding
hybrids by a gap, such that only the bonding states are occupied.

try the p orbitals of the four neighboring sites transform according to the
same irreducible representation as the t2g orbitals when analyzed around the
central site. This creates a large bonding-antibonding splitting (Fig. 6.16),
with the low-lying bonding states being more of p character around the sp
neighbors, and the antibonding being rather of d character around the 3d
atom. The gap formed in between is partly filled by the eg states of the 3d
atom (dz2 and dx2−y2); these have a non-bonding character, forming narrow
bands. The position of the bands will be different for majority and minority
electrons, due to the exchange splitting.

Such a symmetry-induced p-d hybridization and bonding-antibonding
splitting is also taking place in transition metal doped zinc-blende semicon-
ductors [107, 108]. The case of the zb compounds studied here may be seen as
the limit of the full substitution of the semiconductor cation by the transition
metal. It is important to note that the tetrahedral coordination, characteris-
tic of zb geometry, is necessary for the formation of the bonding-antibonding
gap, since, as it has been reported [109, 110, 111], in the hexagonal NiAs
geometry MnP, MnAs and MnSb show no gap.

Figure 6.17 shows the bandstructure of CrTe. The s states of Te are very
low in energy and omitted in the figure. Around −4 eV, the p-bands can be
seen. In the majority band, the states formed by the Cr eg orbitals are found
at about 1.5 eV under the Fermi level, while in the minority band these states
are at about 1.5 eV above the Fermi level. They are narrow, reflecting the fact
that their hybridization with the states of Te neighbors is weak (or even zero,
at k = 0, due to symmetry). These bands can accommodate two electrons per



78

W L

-3

0

3

E
-E

F [
eV

]

Γ X W K Γ X U L

W L

-3

0

3

Γ X W K Γ X U L

eg

t2g

p

eg

p

Figure 6.17: The bulk bandstructure of CrTe, along the high symmetry lines
of the first Brillouin zone of an fcc lattice. The upper panel presents the
bandstructure in the majority spin direction, while the lower one presents
the bandstructure in the minority spin direction.

spin. Above them, the substantially wider antibonding p-t2g hybrids appear,
starting from −1.5 eV for majority and from +1 eV for minority. Their large
bandwidth can be attributed to the strong hybridization and to their high
energy position. The bonding-antibonding splitting is also contributing to
the fact that they are pushed up beyond the narrow eg states. As a result, the
three families of bands do not intermix, but are rather energetically separate.
In the majority-spin direction the bonding-antibonding splitting is smaller,
because Cr 3d states are originally lower in energy, closer to the p states of
the Te atom. In the minority spin direction the states are higher due to the
exchange splitting and the gap is positioned around EF . Band counting gives
an integer total magnetic moment of 4 µB.

An additional note can be made here. Looking at the Fig. 6.15, one
notices that in the case of the compounds containing group-V sp element (As,
Sb), the low lying states in the majority band have more of the transition



Zinc-blende Half-metallic Compounds 79

compound aopt MY MZ Mt
(YZ) (Å) (µB) (µB) (µB)

Z
=

10

VAs 5.694 1.885 −0.156 2.000

Z
=

11 CrAs 5.652 2.958 −0.240 3.000
VTe 6.250 2.630 −0.123 3.000

Z
=

12 CrTe 6.257 3.705 −0.151 4.000
MnSb 6.182 3.907 −0.155 4.000

Table 6.3: The (GGA) optimized lattice constants aopt, the magnetic mo-
ments in the muffin-tin spheres of atoms Y= V, Cr, Mn (MY), Z=As, Sb, Te
(MZ) and the total magnetic moment per unit cell, Mt, of several zinc-blende
half-metallic compounds of type YZ, with Z valent electrons in the unit cell.

metal character, as opposed to the case of the compounds with group-VI sp
element (Te). The reason is that the p states of the group-VI elements lie
lower in energy than the p states of the group-V elements which in turn lie
at approximately the same energy as the majority d states of the transition
metal (or even higher). On the other hand, in the minority band the d states
are, due to the exchange splitting, shifted to higher energies and the low
lying states are here rather of the character of the sp atom. In the case of
MnSb for instance, the exchange splitting of Mn is very large and the p-t2g

hybridization which opens the gap in the minority band is not visible in the
majority band (Fig. 6.15). The lower lying p states of group-VI elements are
the reason why the gap in the compounds containing these elements is bigger
than in the compounds with group-V elements.

Finally, like in the case of half- and full-Heusler alloys, for the zb half-
metallic compounds it is also possible to define a rule which determines the
total magnetic moment from the number of the valence electrons. One can
see this from simple electron counting. The bonding p − d bands can ac-
commodate 6 electrons (3 per spin), and since they lie low in energy they
must be filled up. In addition, there is yet another band lower in energy,
consisting of the s states of the sp atom, which has space for two electrons
(one per spin). Once these 8 bands are filled by 8 of the valence electrons,
the remaining electrons will fill part of majority d states, first the lower-lying
eg and then the t2g, creating the magnetic moment. This electron counting
gives then for the magnetic moment the rule of 8 [21],

Mt = (Z − 8), (6.4)

where Z is the total number of valence electrons in the unit cell. As an
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illustration of this rule, in the Table 6.3 the magnetic moments of some of
the half-metallic zb compounds are given. The case of VAs is interesting,
because it turns out that it is a (very) narrow gap semiconductor (Fig. 6.18).
It has in total ten valence electrons, eight of which are accommodated in the
low lying s and p bands. The majority eg band accommodates the remaining
two. Since the eg are energetically separated from the higher lying t2g states
by a small gap in the majority band, the Fermi energy lies in this small gap.



Chapter 7

Half-metallicity made difficult

The emergence of the field of magnetoelectronics during the last decade has
given birth to a new series of challenges in materials science [3, 4]. A central
problem remains the the spin-injection from a ferromagnet into a semicon-
ductor [112, 113]. Its successful realization would lead to the creation of a
series of novel devices such as spin-filters [15], tunnel junctions [16] or GMR
devices for spin injection [17]. The use of half-metallic ferromagnets as elec-
trodes was proposed to maximize the efficiency of such spintronic devices
and for this reason a great amount of work is being done on investigation of
stability of the gap in the minority spin band.

Experiments seem to well establish the half-metallicity in the case of
NiMnSb single crystals [28, 29] or away from the surface in the case of thick
films [35]. On the other hand, the surface states will destroy the gap in
the first several layers (see Section 7.2). Another problem one encounters
when trying to form an interface of a half-metal with a semiconductor are
the possible interface states which might appear in the gap. Interfaces of
NiMnSb with InP are investigated in Section 7.3.

Several studies were performed on NiMnSb in which the gap was found
to be stable under hydrostatic pressure and tetragonalization [114] or a small
disorder [31] but the exchange of the atoms occupying the different sublat-
tices completely destroys the gap [30]. A study of antisite defects and their
screening mechanisms in Co2MnGe and Co2MnSi can be found in Ref. [115].
In general, impurities in half-metals can be a serious source of problems.
An isolated point defect cannot change the band gap nor the Fermi level,
since these are bulk properties. Also the number of minority states cannot
be changed, except when the defect introduces additional resonances in the
minority band, or takes out weight from this band by splitting-off states into
the gap. As a result, in the dilute limit the band gap and half-metallicity is
preserved, but states in the gap, either occupied or empty ones, can occur.

81
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An exception occurs if a multifold degenerate gap-state is partially occupied
and thus fixed at the Fermi level. Then a symmetry lowering Jahn-Teller
splitting of the level is expected to occur. For finite concentrations, impurity
states in the gap overlap and fast broaden to form impurity bands. If the
impurities are randomly distributed, one can show by applying the coher-
ent potential approximation (CPA) [27], that the band width scales as

√
c,

where c is the impurity concentration. For instance, this means, that the
bandwidth is for a concentration of 1 % only a factor 3 smaller than for 10
%. Therefore the impurity bands broaden very fast with concentration and
can soon fill up the band gap, in particular, if the band gap is small and the
impurity states are rather extended.

The control of defects and disorder is an important problem for the ap-
plication of Heusler alloys in spin electronics, but even in an ideally prepared
single crystal the spin-orbit coupling will introduce states in the half-metallic
gap of the minority states (for the spin-down electrons), which are produced
by spin-flip scattering of the majority states (with spin-up direction). The
effect of spin-orbit coupling is investigated in Section 7.1.

Finally, one of the most serious enemies of half-metallicity, thermal ex-
citations, will not only introduce states within the gap, but at sufficiently
high temperature they will totally destroy the magnetism of a ferromagnet.
Since we would like to have devices which function at the temperature range
in which we function (i.e. around 290 K), it is important for the applications
of half-metals to know how they behave at this temperature. A study of
the finite temperature behavior of half-metals will be presented in the next
chapter.

7.1 Effect of Spin-orbit Coupling

In half-metals, spin-orbit coupling (SOC) can introduce states in the gap
in the minority spin band and so reduce the spin polarization at the Fermi
level. This effect is expected to be stronger for the compounds which contain
heavy elements. For instance in MnBi, theoretically predicted half-metallic
zb compound, Mavropoulos and coworkers [116] found that DOS in the gap
of the minority spin band introduced by SOC is of the order of 13 % of the
DOS in the majority band at the Fermi level.

The spin-orbit coupling of the two spin channels is related to the unper-
turbed potential V (r) around each atom via the angular momentum operator
~L and the Pauli spin matrix ~σ:

Vso(r) =
1

2m2c2
h̄

2

1

r

dV

dr
~L · ~σ =

(

V ↑↑
so V ↑↓

so

V ↓↑
so V ↓↓

so

)

(7.1)
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Figure 7.1: Atom-resolved densities of states of the full-Heusler alloys with
formula Co2MnZ, Z=Si, Ge, Sn, with (dashed lines) and without (solid lines)
spin-orbit coupling. LDOS of Si, Ge, Sn - red lines, LDOS of Mn - blue lines,
LDOS of Co - green lines.

The 2 × 2 matrix form is written in spinor basis. The two spin directions
are denoted with ↑ and ↓. The unperturbed crystal Hamiltonian eigenvalues
for the two spin directions are E0↑

n~k
and E0↓

n~k
, and the unperturbed Bloch

eigenfunctions as Ψ0↑

n~k
and Ψ0↓

n~k
. Then, noting that within the spin-down gap

there exist no unperturbed solutions Ψ0↓

n~k
and E0↓

n~k
, the first order solution of

Schrödinger equation for the perturbed wavefunction Ψ↓

n~k
reads for states in

the gap:

Ψ
(1)↓

n~k
(~r) =

∑

n′

〈Ψ0↓

n′~k
|V ↓↑

so |Ψ0↑

n~k
〉

E0↑

n~k
− E0↓

n′~k

Ψ0↓

n′~k
(~r). (7.2)

Here, the summation runs only over the band index n′ and not over the Bloch
vectors ~k′, because Bloch functions with ~k′ 6= ~k are mutually orthogonal.
Close to the crossing point E0↑

n~k
= E0↓

n′~k
the denominator becomes small and

the bands couple strongly. Then one should also consider higher orders in the
perturbation expansion. Since at the gap edges there exist spin-down bands
of the unperturbed Hamiltonian, this effect can become important near the
gap edges. Apart from that, the important result is that in the gap region
the spin-down spectral intensity is a weak image of the spin-up one. Since
the spin-down DOS is related to |Ψ(1)↓

n~k
|2, it is expected that within the gap

the DOS has a quadratic dependence on the spin-orbit coupling strength:
n↓(E) ∼ (V ↓↑

so )2.
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Figure 7.2: Atom-resolved densities of states of the half-Heusler alloy NiMnSb
(left) and zb half-metal CrTe (right), with (dashed lines) and without (solid
lines) spin-orbit coupling. LDOS of Sb, Te - red lines, LDOS of Mn, Cr - blue
lines, LDOS of Ni - green lines.

In Fig. 7.1, densities of states of full-Heusler compounds Co2MnSi, Co2MnGe
and Co2MnSn with (dashed lines) and without (solid linew) SOC are shown.
Although both Co2MnGe and Co2MnSn present a small DOS in the mi-
nority band at the Fermi level (EF enters slightly into the valence band),
it is instructive to examine the DOS in the gap region and see how the
spinpolarization decreases as one changes to heavier elements (Si→Ge→Sn).
Spin-polarization at the energy E, P (E), is defined by the ratio

P (E) =
n↑(E) − n↓(E)

n↑(E) + n↓(E)
. (7.3)

In the Table 7.1 two quantities are shown: the spin polarization at EF ,
P (EF ), and in the middle of the gap, P (EM). The latter reflects the strength
of the spin-orbit induced spin flip scattering, while the former is relevant
only when EF is well within the gap. For the two half-metals shown in the
Fig. 7.2, NiMnSb and zb CrTe, also high values of polarization at the Fermi
level (which in both cases lies in the gap) are obtained: 99.3% for NiMnSb
and 99.6% for CrTe.

Comparing the results gathered in the Table 7.1, one can notice a slight
lowering of the polarization with a change to the heavier sp. Mavropoulos et
al. have investigated the behavior of the spin polarization in half-Heusler
alloys of the type XMnSb, taking for the X-element Ni, Pd and Pt [117]. They
found a much more drastic decrease of the spin polarization in the middle of
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Alloy Co2MnSi Co2MnGe Co2MnSn NiMnSb PdMnSb∗ PtMnSb∗

P (EF ) 99.7% 97.9% 81.5% 99.3% 40.0% 66.5%
P (EM) 99.7% 99.4% 99.0% 99.3% 66.5% 94.5%

Table 7.1: Calculated spin polarization at the Fermi level [P (EF )] and
in the middle of the spin-down gap [P (EM)], for several Heusler alloys.
(∗):Reference [117]

the gap, namely 99.3% for NiMnSb (the same value is also obtained from a
calculation presented here, Fig. 7.2 left), 98.5% for PdMnSb, and 94.5% for
PtMnSb. A possible reason for this difference is that in the cases of Co2MnSi,
Co2MnGe, and Co2MnSn, the sp atom, whose states are far away from the
gap was changed, while in the case they studied one of the d atoms, whose
states hybridize and open the gap, was changed.

7.2 Surfaces of NiMnSb

Recently, high quality films of NiMnSb alloys have been grown [118, 119, 120],
but they were found not to be half-metallic [18, 121]. A maximum value of
58% for the spin polarization of NiMnSb was obtained by Soulen et al. [18].
These polarization values are consistent with a small perpendicular magne-
toresistance measured for NiMnSb in a spin-valve structure [122] and su-
perconducting tunnel junction or a tunnel magnetoresistive junction [16].
Ristoiu et al. showed that during the growth of the NiMnSb thin films, first
Sb and then Mn atoms segregate to the surface, which is far from being per-
fect, thus decreasing the obtained spin polarization [36]. After removing the
excess of Sb by a flash annealing, they managed to get a nearly stoichiometric
ordered alloy surface being terminated by a MnSb layer, which presented a
spin polarization of about 67±9% at room temperature [36].

First-principles calculations have been also employed to study the surfaces
of NiMnSb. Jenkins and King were the first to study by a pseudopotential
technique (CASTEP) the MnSb terminated (001) surface of NiMnSb and
showed that there are two surface states at the Fermi level, which are well
localized at the surface layer [37]. They have also shown that there is a small
reconstruction of the surface with the Mn atoms moving slightly inwards
and the Sb outwards and this small c(1× 1) relaxation is energetically more
favorable than the creation of Mn or Sb dimers. The unrelaxed (001) sur-
faces were also studied by Galanakis, using the full-potential version of the
Korringa-Kohn-Rostoker Green function method [38] and a large spin polar-
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ization at the MnSb-terminated surface in agreement with the experiments
of Ristoiu et al. [36] was found. A study of the (111) surfaces by Jenkins [39]
has shown that the Sb-terminated (111) surfaces are more stable than the
Mn- and Ni-terminated ones [39].

In this section, ab-initio calculations of the (001) and (111) surfaces of
NiMnSb obtained with FLAPW method are presented. All possible termi-
nations are taken into account. The atomic positions of the atoms near the
surface are relaxed and the influence of these relaxations on the properties
of the surfaces is studied.

Prior to presenting the results, an important note should be made. Based
on the experience from ferromagnets and semiconductors, two effects should
be particularly relevant for the surfaces of half-metals:

• In ferro- and antiferromagnets, the moments of the surface atoms are
strongly enhanced due to the missing hybridization with the cut-off
neighbors

• In semiconductors, surface states can appear in the gap, such that
the surface often becomes metallic. Also this is a consequence of the
reduced hybridization, leading to dangling bond states in the gap.

7.2.1 Structure of the surfaces

In this section, a short description of the unit cells used for the surface cal-
culations is given. It is convenient to view the crystal as a set of successive
atomic planes, with a relevant in-plane unit cell, corresponding to the surface
unit cell. In Fig. 7.3, two of many possible choices of unit cells of C1b struc-
ture (see Fig. 6.2) are shown. The (001) in-plane unit cell (upper panel) is
quadratic. Its in-plane lattice parameter is a/

√
2, a being the lattice parame-

ter of the cubic unit cell. The bulk unit cell is built by four equidistant layers,
and the interlayer distance is a/4. For the calculation of (001) surfaces, the
the number of layers will, of course, depend on the selected thickness of the
film. There are two different possible terminations in the case of the (001)
surfaces, one containing the Mn and Sb atoms while the other contains the Ni
atom. In the present study, 9 atomic layers were used for the calculations of
(001) surfaces. This means that the two surfaces are equivalent, but rotated
by 90o.

The bulk unit cell shown in the lower panel of the Fig. 7.3 corresponds to
the hexagonal (111) in-plane lattice for C1b structure. Along the [111] direc-
tion, the unit cell consists of alternating layers containing only one chemical
element. There are 12 equidistant layers in the bulk unit cell (the stacking
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Figure 7.3: Two choices of bulk unit cells, the one consisting of (001) layers
(upper panel) and the other consisting of (111) layers (lower panel). On the
left, the in-plane unit cells are drawn. In the tables, the atoms which occupy
the positions 1, 2, 3 (and 4 in the case of (001) surface) in each layer of
the unit cell are listed. The positions of the atoms are given in units of the
in-plane lattice constant.

along the [111] direction is given in the corresponding table in Fig. 7.3), 3 of
which are empty, and the total hight of the cell is a

√
3. The lattice parame-

ter of the in-plane unit cell is a/
√

2. This in-plane unit cell was used for the
calculation of the (111) surfaces. In the case of a Ni-terminated surface, for
example, there are two different possibilities: either to have a Mn subsurface
layer or an Sb one. The films used here for calculations of (111) surfaces
consisted of 13 atomic layers. This means that the two sides of the films
were giving the two possible terminations for each of the three constituents
(Ni, Mn and Sb).
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7.2.2 (001) surfaces

As mentioned above, there are two different possible terminations for the
(001) surfaces, either the Ni one or the MnSb one. In both cases, the three
top layers were geometrically relaxed. In the case of Ni termination, the
Mn and Sb atoms at the subsurface layer did almost not move, while the
distance between the Ni layer and the MnSb subsurface layer was reduced by
around 10%. In the case of MnSb termination the Mn atom at the surface
layer moves inwards and the Sb atom outwards. The distance between the
Mn surface atom and the Ni subsurface layer is contracted by 3.5 % and the
distance between the Sb surface atom and the Ni subsurface layer is expanded
by 7.3 %. These results agree nicely with the results obtained for the same
termination of the (001) surface by Jenkins and King [37].

Density of states

In the left panel of figure 7.4, we present atom- and spin-projected densities
of states (DOS) for the Ni atom at the surface and the Mn and Sb atoms
in the subsurface layer for the case of the Ni-terminated surface. The right
panel contains the analogous results for the MnSb terminated NiMnSb(001)
surface. For both possible terminations, the surface DOS of both the relaxed
and non-relaxed calculations together with the bulk results (grey region) are
gathered. Relaxation has a very small effect on the DOS, even around the
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Figure 7.4: Local DOS for the atoms at the surface and subsurface layers
for both Ni- and MnSb- terminated NiMnSb(001) surfaces. With the thick
solid line the results for the relaxed surface and with the dashed line for the
non-relaxed case. Grey represents the bulk results.
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Figure 7.5: Minority-spin surface-bandstructure for the two different (001)
surfaces. With grey the projection of the bulk bands on the surface is plotted,
with dashed lines the band structure of the non-relaxed surface and with
green line of the relaxed one. The red circles represent the surface states for
just one of the two equivalent surfaces of the slab, having more than 50% of
their weight located at the first two layers of one of the surfaces.

Fermi level.
In the case of the MnSb terminated sur-

Figure 7.6: Two-dimensional
(001) surface Brillouin zone

face the DOS, with the exception of the gap
region, is very similar to the bulk calcula-
tions. The Ni atom in the subsurface layer
presents practically a half-ferromagnetic char-
acter with an almost zero minority-spin DOS,
while for the bulk there is an absolute gap.
The Mn and Sb atoms in the surface layer
show more pronounced differences with re-
spect to the bulk, and within the gap there
is a very small Mn-d and Sb-p DOS, due to
the surface states. These states are strongly
localized at the surface layer as at the subsurface layer there are practically
no states inside the gap. This is in agreement with previous first principles
calculations by Galanakis [38], as well as with the experiments of Ristoiu et
al. [36] who in the case of a well ordered MnSb-terminated (001) surface
measured a high spin polarization.

In order to show the origin of the surface states, the minority-spin surface-
bandstructures for the two terminations are drawn in figure 7.5. The two-
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dimensional Brillouin zone (also called surface Brillouin zone, SBZ) is a sim-
ple square (Fig. 7.6). The bandstructure of the relaxed system (green lines)
has little difference with respect to the unrelaxed one (dashed lines). As it
was pointed out earlier, since the slab used in the calculations consists of 9
atomic layers, the two opposite sides of the film are equivalent, but rotated
by 90o. This implies that what is [Γ̄ → J̄ ] direction for one of the surfaces,
is [Γ̄ → J̄ ′] for the other and vice versa. Since the bandstructure in the
Fig. 7.5 presents all the states of the electronic system of the slab, these
states (green lines) appear to be the same along these two directions. To
distinguish between the states coming from the two different surfaces, the
red circles show the states that have more than 50% of their weight located
at the first two layers at one of the surfaces. The presented results agree with
the ones of Jenkins and King who for the same surface have shown that there
are two surface states [37]. The results for the MnSb terminated surface are
presented in the left panel. The lower lying state (at 0.20 eV at the Γ̄ point)
is due to the interaction between eg-like dangling bond states located at the
Mn atoms. The second surface state, which is higher in energy (∼0.3 eV
at the Γ̄ point) arises from the hybridization between t2g-like orbitals of Mn
with p-type orbitals of Sb. The first surface state disperses downwards along
the [Γ̄ → J̄ ′] direction while the second surface state disperses upwards along
the same direction. Their behavior is inversed along the [Γ → J̄ ] direction.
The two surface states cross along the [Γ → J̄ ] direction bridging the mi-
nority gap between the valence and the conduction band. Along the other
directions anticrossing occurs leading to band-gaps. Of interest are also the
saddle-like structures around the zone center which manifest as van Hove
singularities in the DOS.

For the Ni-terminated surface the DOS shown in Fig. 7.4 reveals that the
surface states are much more pronounced (i.e. the spin polarization at the
Fermi energy is lowered). The surface bands, as shown in Fig. 7.5, are flat in
the region of the bulk gap in the minority spin-band, leading to the increased
DOS at these energies.

Spin polarization

The spin polarization at the Fermi level is of primary importance, since the
electrons near the Fermi level are most relevant for transport properties.
In Fig. 7.7, the angular-momentum-, spin-, and layer-projected DOS at the
Fermi level (n↑(EF ) or n↓(EF )) for all the calculated slabs are shown. The
layers near the edges of the each figure represent the two equivalent surfaces
while the layers in the middle can be considered as ”bulk”. In the case of
the unrelaxed surfaces (upper panels) the DOS intensity of the layers at the
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Figure 7.7: Angular momentum-projected DOS at the Fermi level along the
whole slab used in the calculations. Note that the slabs in the case of the
(001) surfaces have the same terminations from both sides.

middle of the slab is almost zero and thus the dimensions of the slab used in
the calculation are sufficient to realistically represent the real surface. Only
in the case of the relaxations for the MnSb-termination, the Mn atom in the
middle layer presents a very small DOS. As expected, the states at the Fermi
level are mainly of d character for Mn and Ni and of p character for Sb.

In Table 7.2, the spin polarization data for both (001) surfaces are gath-
ered. The spin polarization was calculated at the Fermi level, either taking
into account only the first two surface layers (P1), or the first four surface
layers (P2). P2 represents quite well the experimental situation, as the spin
polarization in the case of films is usually measured by inverse photoemission
which probes only the 3-4 atomic layers of the sample that are closest to the
surface[123]. As it is expected, the inclusion of more layers increases the spin
polarization since the deeper layers are more bulk-like. Relaxation in the
case of the Ni-terminated surface decreases the spin polarization while in the
case of the MnSb-terminated surface the spin polarization is increased by the
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Spin (001) Ni (001) Ni (001) MnSb (001) MnSb
Polarisation unrelaxed relaxed non-relaxed relaxed
Layers n↑(EF ) 0.855 0.641 0.777 0.796
S, S-1 n↓(EF ) 0.655 0.556 0.161 0.107

P1 13% 7% 66% 76%
Layers n↑(EF ) 1.781 1.352 1.573 1.543
S, S-1 n↓(EF ) 0.730 0.618 0.194 0.135
S-2, S-3 P2 42% 37% 78% 84%

Table 7.2: Spin-projected DOS at the Fermi level (n↑(EF ) or n↓(EF )) for
different (001) surfaces taking into account either the top two layers, S and
S-1 (upper panel), or the top four layers (lower panel). The spin polarization
is defined by the Eqn. 7.3

relaxation of the atomic positions.
In the case of the Ni terminated surface, the minority-spin DOS at the

Fermi level is quite large with respect to the majority DOS and net polar-
ization P2 is 42% for the unrelaxed case and slightly decreases to 37% by the
structural optimization. In the case of the MnSb terminated surface, the spin
polarization is much larger and now P2 reaches a value of 84% for the relaxed
structure, which means that more than 90% of electrons at the Fermi level
are of majority-spin character. As can be seen from the Fig. 7.7, the main
difference between the two different terminations is the contribution of the
Ni spin-down states. In the case of the MnSb surface, Ni in the subsurface
layer has a negligible spin-down DOS at the Fermi level with respect to the
Ni-terminated surface; in the latter case, the spin polarization of the surface
Ni layer is even reversed!

It is also interesting to note that for both terminations the net Mn spin
polarization is close to zero while Sb atoms in both cases show a large spin
polarization. The calculated P2 value of 84% for the MnSb terminated sur-
face is larger than the experimental value of 67% obtained by Ristoiu and
collaborators [36] for a thin-film terminated with a MnSb stoichiometric al-
loy surface layer, but experimentally no exact details of the structure of the
film are known and the comparison between experiment and theory is not
straightforward.

Magnetic moments

The spin magnetic moments in the muffin-tin spheres of the atoms in the
surface and subsurface layers are shown in Table 7.3. We should firstly notice
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(001) Ni-terminated (001) MnSb-terminated
mspin unrelaxed relaxed mspin unrelaxed relaxed
Ni(S) 0.435 0.377 Mn(S) 3.937 3.925
Mn(S-1) 3.792 3.642 Sb(S) −0.101 −0.102
Sb(S-1) −0.043 −0.044 Ni(S-1) 0.211 0.242
Ni(S-2) 0.273 0.278 Mn(S-2) 3.661 3.690
Mn(S-3) 3.707 3.585 Sb(S-2) −0.065 −0.067
Sb(S-3) −0.055 −0.054 Ni(S-3) 0.269 0.243

Table 7.3: Atom-projected spin magnetic moments (mspin) in µB for the
atoms at the top four layers for both Ni- and MnSb-terminated (001) surfaces,
for relaxed and unrelaxed cases.

that relaxation has a very small effect on the spin moments. Even for the
surface layer which shows the largest relaxation effects, spin moments change
only marginally.

In the case of the MnSb terminated NiMnSb(001) surface, the Ni spin
moment is comparable to the bulk situation (see Table 6.1). The Mn in the
surface layer loses ∼0.3e− more than the bulk Mn due to the spilling of charge
out into the vacuum. This charge is mainly of minority-spin character and
Mn’s spin moment increases with respect to the bulk and is slightly more than
∼3.9µB. This behavior arises from the reduced symmetry of the surroundings
of the Mn atom in the surface, where it loses two of the four neighboring Ni
atoms. In the majority band, this leads to a narrowing of the d-DOS and a
slight increase of the d count by 0.10 e−, while in the minority valence band
the Mn d contribution decreases by 0.20 e−. Moreover, the splitting between
the unoccupied Mn states above EF and the center of the occupied Mn states
decreases and at EF a surface state appears. It should also be mentioned
here that since the half-metallic character is lost, an increase of the total spin
moment is observed, which is no more an integer.

In the case of the Ni terminated surface, the changes in the DOS compared
to the bulk are more pronounced. The Ni atom in the surface instead of
gaining ∼0.5e− as in the bulk now even loses some charge. As was the
case for the Mn surface atom in the MnSb terminated surface, the Ni spin
magnetic moment is increased. (see Table 7.3). The Mn and Sb atoms in the
subsurface layer present a charge transfer comparable to the bulk compound
and also a comparable spin moment.
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7.2.3 (111) surfaces

We now turn to the study of NiMnSb (111) surfaces. Relaxations in the case
of the (111) surfaces, which were allowed for the first three surface layers, are
considerably larger than for the (001) surfaces. In Table 7.4, the change in
the distance between two successive layers with respect to the unrelaxed cases
is shown. Along the [111] direction the layers consist of only one chemical
element. In the unrelaxed cases the distance between Sb and Mn successive
layers is twice the distance between a Ni and a Mn or Sb layer (see Fig. 7.3
for the stacking). As can be easily seen, for a Ni termination there can be
either a Mn or a Sb layer as subsurface layers, and similarly for Mn and Sb
terminations.

When the (111) surface is Ni-terminated, the Ni atoms at the surface
layer move closer to the subsurface layer and the contraction is 23% and 18%
for Sb and Mn as subsurface layers, respectively. Relaxations are much less
important from the subsurface layer and on. When the surface is a Mn-Ni-Sb-
... one, the Mn atoms move closer to Ni ones due to the lower coordination.
In the case of the Mn-Sb-Ni-... the relaxation of the Mn surface layer is
much more important since the Mn-Sb distance is twice the Mn-Ni one and
the Mn atoms at the surface layer and the Sb atoms at the subsurface layer
have to account for more empty space. Similarly, relaxations are much more
important in the case of the Sb-Mn-Ni-... surface than the Sb-Ni-Mn-...
termination.

Relaxations (111) ∆d12 ∆d23 ∆d34

Ni-Sb-Mn-Ni-... −23% 2% <1%
Ni-Mn-Sb-Ni-... −18% 4% −3%
Mn-Ni-Sb-Mn-... −13% −5% 2%
Mn-Sb-Ni-Mn-... −16% 18% ∼0%
Sb-Ni-Mn-Sb-... 2% −11% 4%
Sb-Mn-Ni-Sb-... −16% 32% −7%

Table 7.4: Change in the distance (∆dij) between successive layers (i and j)
when the atomic positions were relaxed for the (111) surfaces with respect to
the unrelaxed cases. Negative values correspond to contraction and positive
to expansion. Notice also that in the unrelaxed cases the distance between
Sb and Mn successive layers is twice the distance between a Ni and a Mn or
Sb layer.
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Ni-terminated surfaces

As it was already mentioned there are two different possible configurations
of a Ni-terminated surface:

1. When the subsurface layer is the Mn one, the sequence of the layers
under it is Ni - Mn - Sb - Ni - Mn - ...

2. When the subsurface layer is the Sb one, the sequence of the layers
under it is Ni - Sb - Mn - Ni - Sb - ...

In bulk, Ni has four Mn and four Sb atoms as the first neighbors. When it
is at the (111) surface, the Ni atom loses four out of its eight first neighbors.

(111) Ni-Mn-Sb-... (111) Ni-Sb-Mn-...
mspin unrelaxed relaxed mspin unrelaxed relaxed
Ni(S) 0.536 0.470 Ni(S) 0.295 0.300
Mn(S−1) 3.892 3.774 Sb(S−1) −0.042 −0.042
Sb(S−2) −0.050 −0.049 Mn(S-2) 3.714 3.541
Ni(S−3) 0.272 0.265 Ni(S−3) 0.234 0.214
Mn(S−4) 3.700 3.567 Sb(S−4) −0.069 −0.070
Sb(S−5) −0.052 −0.050 Mn(S−5) 3.679 3.557

(111) Mn-Ni-Sb-... (111) Mn-Sb-Ni-...
mspin unrelaxed relaxed mspin unrelaxed relaxed
Mn(S) 3.902 3.731 Mn(S) 4.164 3.892
Ni(S−1) 0.229 0.280 Sb(S−1) −0.041 −0.047
Sb(S−2) −0.074 −0.071 Ni(S−2) 0.299 0.331
Mn(S−3) 3.628 3.564 Mn(S−3) 3.700 3.659
Ni(S−4) 0.239 0.247 Sb(S−4) −0.060 −0.066
Sb(S−5) −0.069 −0.076 Ni(S−5) 0.273 0.268

(111) Sb-Mn-Ni-... (111) Sb-Ni-Mn-...
mspin unrelaxed relaxed mspin unrelaxed relaxed
Sb(S) −0.186 −0.208 Sb(S) −0.118 −0.120
Mn(S−1) 3.616 3.564 Ni(S−1) 0.133 0.146
Ni(S−2) 0.189 0.092 Mn(S−2) 3.521 3.500
Sb(S−3) −0.073 −0.074 Sb(S−3) −0.064 −0.067
Mn(S−4) 3.646 3.593 Ni(S−4) 0.256 0.235
Ni(S−5) 0.260 0.244 Mn(S−5) 3.698 3.689

Table 7.5: Atom-projected spin magnetic moments (mspin) in µB for the
atoms at the top six layers for all Ni-, Mn- and Sb-terminated (111) surfaces
and for both relaxed and unrelaxed cases.
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Figure 7.8: Same as Figure 7.4 for the Ni-terminated (111) surfaces. There
are two different Ni terminations, either with a Sb or a Mn subsurface layer.

In the case of Ni-Mn-Sb-... termination it loses three Sb atoms and one Mn
atom while in the Ni-Sb-Mn-... case one Sb and three Mn atoms.

In Table 7.5 the spin moments are presented for the first six layers of all
surfaces under study. Relaxations only slightly change the spin moments.
In the case of Ni-Mn-Sb-... both Ni and Mn atoms at the surface have
very large moments with respect to both the bulk values and the Ni-Sb-
Mn-... case. Especially the Ni moment is almost doubled (0.47 µB) with
respect to the bulk value of 0.26 µB. In the case of the bulk NiMnSb, the
minority gap is created by the hybridization between the d-orbitals of the Ni
and Mn atoms, but the Sb atom plays also a crucial role since it provides
states lower in energy than the d bands which accommodate electrons of the
transition metal atoms (see Section 6.1). At the surface terminated at Ni-
Mn-Sb-..., each Ni surface atom loses three out of the four Sb first neighbors
and regains most of the charge accommodated in the p bands of Sb. These
extra electrons fill up mostly majority states increasing the Ni spin moment.
The Mn spin moment is also increased since Mn and Ni majority d states
strongly hybridize forming a common majority band. Thus, the spin moment
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Figure 7.9: Same as Figure 7.5. The red filled spheres denote the surface
states for the relaxed Ni-Sb-Mn-... surface and the blue for the Ni-Mn-Sb-...
terminated surface. Similar at the left panel for the Sb terminated surfaces
and at the bottom panel for the Mn-terminated surfaces. In the right lower
corner, (111) two-dimensional first Brillouin zone is drawn.
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of Mn at the subsurface layer increases reaching the 3.77µB with respect to
the bulk value of 3.7µB. If one goes further away from the surface, the
atoms have a bulk-like environment and their spin moments are similar to
the bulk case. In the Ni-Sb-Mn-... surface, Ni at the surface loses only one
Sb first neighbor and the effect of the cut-off neighbors is much smaller. The
moment is slightly smaller than the bulk one, mainly due to a surface state in
the minority band shown in Figure 7.9. Already at the Sb subsurface atom
the atoms regain a bulk-like behavior for the spin moment.

In Figure 7.8 the spin-resolved density of states (DOS) is shown, for the
three layers closest to the surface, for both types of Ni termination. For the
Ni-Mn-Sb-... termination, there is a minority surface state pinned exactly at
the Fermi level which completely destroys the half-metallicity. As mentioned
above the population of the majority states increases and due to the exchange
splitting the minority states are pushed higher in energy and this results to
a very sharp shape of the surface state. Actually, there are two surface
states as will be discuss later. This phenomenon is more pronounced for the
Mn atom at the subsurface layer, which presents a much larger exchange
splitting (since it scales with the spin magnetic moment). This surface state
gradually decays with the distance from the surface and for the Ni atom at
the S−3 position (not shown here) it practically vanishes. We can see these
surface states also in the surface-bandstructure presented in Fig. 7.9. With
the blue lines the surface states for this termination are plotted. In reality
there are two surface states similarly to the (001) surfaces, which are now
very narrow-spread in energy resulting in the very sharp peak, around the
Fermi level.

In the case of the Ni-Sb-Mn-... surface, the Ni spin moment is much
smaller and the Mn atom is deep in the substrate. Ni bands even move
slightly higher in energy and thus the surface states are now much more
extended in the energy axis and cannot be well separated from the rest of
the DOS as shown in Fig. 7.8. This situation is similar to the Ni terminated
(001) surface. These surfaces states are presented in Figure 7.9 with the red
dots. They are clearly much broader in energy than the states in the case
of the Ni-Mn-Sb-... termination resulting in a very extended peak at the
Fermi level which is not easily distinguished in the DOS. The band-structures
presented here are similar to the ones calculated by Jenkins [39].

Mn and Sb-terminated surfaces

Finally, here the Mn and Sb terminated surfaces will be discussed. As it was
the case for the Ni terminated ones, there are again two different possible
terminations. In Table 7.5 the atomic spin moments are gathered for all the
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Figure 7.10: Same as figure 7.8 for the Mn- and Sb-terminated (111) sur-
faces. Each column represents a different surface termination. The top panels
represent the surface layers, the middle ones the subsurface layers and the
bottom panels the subsubsurface ones.

possible cases.

In the case of the Mn surfaces, Mn at the surface layer loses half of its
Sb second neighbors and, similarly to what happened in the case of the Ni-
Mn-Sb-... surface, its spin moment is strongly enhanced reaching 3.9 µB for
the Mn-Ni-Sb-... and the 4.2 µB for the Mn-Sb-Ni-... case. In the latter
case, between the Mn surface and Sb subsurface layers the distance is twice
as large as between the other layers. Thus, the hybridization between the
Mn d-orbitals and the Sb p- and Ni d-orbitals is strongly reduced, leading to
an increase of the spin moment with respect to the Mn-Ni-Sb-... case. The
atoms deeper in the surface quickly reach a bulk-like behavior.

Following the same arguments as for Mn, one can understand also the
behavior of the spin moments for the Sb terminated surfaces presented in
Table 7.5. The absolute value of the Sb spin moment at the surface layer
increases with respect to the bulk. When the subsurface layer is a Mn layer
(Sb-Mn-Ni-.. case), the hybridization effects are less important (since these
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layers are further apart) and the Sb spin moment can reach a value of -0.2 µB,
almost triple the bulk value (-0.06 µB) and double the value for the (001)
surface (−0.1 µB). The change in the Sb p-bands influences also through
hybridization the bands of the transition metal atoms for which now the
minority bands population increases leading to smaller spin moments of the
Ni and Mn atoms at the subsurface layers. The phenomenon is more intense
in the case of Sb-Ni-Mn-... where the Ni layer is just below the Sb surface
layer and the reduction in the spin moments of Ni and Sb is much larger
than the Sb-Mn-Ni-... case.

Figure 7.10 presents the DOS for the first three layers for all Mn and Sb
surfaces. In the case of the Mn-terminated surfaces, there is a minority sur-
face state pinned exactly at the Fermi level which destroys the half-metallicity
and which survives also in the Ni subsurface layer, and vanishes in the next
Mn layer (not shown here). The surface states in the reciprocal space are
similar to the ones of the Ni-Mn-Sb-... surface (Figure 7.9). In the case of
the Mn-Sb-Ni-... surface there are three surface states with very flat dis-
persion while in the case of the Mn-Ni-Sb-... (111) surface there is just one
very flat surface state along the M̄ − K̄ line, leading to the very sharp peak
shown in Figure 7.10 and leaving a band gap just above the Fermi level. The
charge densities of the surface states for the two Mn-terminated surfaces,
which lie just at the Fermi level at the point M̄ of the (111) SBZ, are shown
in Fig. 7.11. It can be seen that these states decay with the distance from
the surface, but also that they are weakly coupled to each other, since they
are at the same energy. For a more accurate description of the surface states
a thicker slab can be used, which would decouple the states originating at
the opposite surfaces.

Finally, also in the case of both Sb terminated surfaces there is a minority
surface state bridging the gap and thus destroying the half-metallicity at the
surface. Its intensity is large also in the subsurface layers, but already in
the third layer it starts to decay. These surface states can be also found in
the two-dimensional reciprocal space picture, as shown in the right panel of
Fig. 7.9. They are very wide in energy and thus can not be well separated
from the rest of the DOS.

To sum up, of all the investigated surfaces, the MnSb terminated (001)
one presents electronic and magnetic properties most similar to the bulk com-
pound. There is however a small finite Mn-d and Sb-p DOS within the bulk
spin-down gap. The spin polarization at the Fermi level for this termination
reaches the 84%. The (001) surfaces terminated with Ni present a quite large
density of states at the Fermi level and properties considerably different from
the bulk and the MnSb terminated surfaces. In both terminations, there are
two distinct surface states as seen in the surface-bandstructure but with dif-
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Figure 7.11: The charge densities of the surface states of the two (relaxed)
Mn-terminated surfaces at the Fermi level, at the point M̄ (see Fig. 7). On
the left, the surface state of the Mn-Ni-Sb-... terminated surface, and on the
right the surface state of the Mn-Sb-Ni-... terminated surface is shown. The
slab used for the calculation is terminated with Mn-Ni-Sb-... sequence on the
top, and with Mn-Sb-Ni-... sequence on the bottom. The logarithmic scale
was used.

ferent extension. In all (111) surfaces minority-spin surface states kill the
half-metallicity at the surface. The highest DOS of these surface states is
just at the Fermi level for the Ni and Mn terminated surfaces, and slightly
below the Fermi level for the Sb one. The characteristic of all the surface
states is that they are localized close to the surface region and normally
vanish within few atomic layers.

7.3 Interfaces of NiMnSb with InP

In this section, a study of the electronic and magnetic properties of the
interfaces between the half-metallic Heusler alloy NiMnSb and the binary (zb)
semiconductor InP is presented. Theoretical calculations for the interfaces
of Heusler alloys with semiconductors are few and all results agree that in
general the half-metallicity is lost at the interface between the Heusler alloy
and the semiconductor [40, 124, 125, 126, 127]. Wijs and de Groot have
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argued than in the case of the NiMnSb/CdS (111) contacts the Sb/S interface
keeps half-metallicity when the S atoms sit exactly on top of Sb. [40]. It will
be shown later on that an interface of NiMnSb and InP with similar geometry
also remains half-metallic.

7.3.1 Structure of the interfaces

InP is a zinc-blende semiconductor, and since NiMnSb crystallizes in C1b

structure (see Fig. 6.2), one can imagine that InP continues the growth of
NiMnSb just replacing the atom of Ni with the atom of P and the atom of
Sb with the atom of In (or vice versa) and leaving the Mn site unoccupied
(though in reality usually half-metals are grown on semiconductors and not
the other way around). Thus, making the described substitutions, with the
use of Fig. 7.3, one can easily imagine how the (ideal) interfaces look like.
Within 1% accuracy, NiMnSb (5.91Å) has the same experimental lattice
constant as InP (5.87Å) and epitaxial growth of NiMnSb on top of InP
has been already achieved experimentally by molecular beam epitaxy [120,
128]. Since the lattice parameters of the two compounds are so close, in the
calculations perfect epitaxy can be assumed.

To simulate the (001) interfaces, a repeated slab made up of 8 layers
of NiMnSb and 8 layers of the semiconductor was used. There are several
combinations at the interface, e.g. at the NiMnSb/InP contact the interface
can be either a Ni/In one, Ni/P, MnSb/In or MnSb/P. Since 8 layers of
NiMnSb and 8 layers of InP were used in the supercell, this means that if
one of the contacts is Ni/P the other one is MnSb/In (see Fig. 7.3). For
the (111) interfaces, the supercells consisted of 16 layers of NiMnSb and 12
layers of InP. All the calculations were performed at the experimental lattice
constant of InP (5.87 Å), except for these cases, where the relaxation effects
at the interfaces have been checked. There, the theoretically optimized lattice
constant of InP (5.94 Å) has been used.

Compared to simple surfaces, interfaces are more complex systems due
the hybridization between the orbitals of the atoms of the metallic alloy and
the semiconductor at the interface. Thus, results obtained for the surfaces
in the previous section cannot be easily generalized for interfaces since for
different semiconductors different phenomena can occur.

7.3.2 NiMnSb(001)/InP(001) contacts

First we examine the four possible (001) interfaces. In Table 7.6 the spin
moments for the case of the MnSb/In and MnSb/P interfaces are gathered.
“I” stands for the interface layers, +1 means moving one layer deeper in the
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MnSb/In MnSb/P MnSb surf. bulk
I−3 Ni: 0.307 Ni: 0.297 Ni: 0.269 Ni: 0.262
I−2 Mn: 3.679 Mn: 3.706 Mn: 3.661 Mn: 3.703
I−2 Sb:−0.051 Sb:−0.042 Sb:−0.065 Sb:−0.063
I−1 Ni: 0.303 Ni: 0.312 Ni: 0.211 Ni: 0.264

I Mn: 3.371 Mn: 3.646 Mn: 3.937 Mn: 3.705
I Sb:−0.031 Sb:−0.050 Sb:−0.101 Sb:−0.062
I In:−0.048 P : 0.017

I+1 P :−0.026 In:−0.017
I+2 In:−0.012 P :−0.010
I+3 P :−0.013 In: 0.001

Table 7.6: Atomic spin moments given in µB for the interface between the
MnSb-terminated (001) NiMnSb and the In or the P terminated InP. Last
columns are the moments for the MnSb-terminated NiMnSb(001) surface and
the bulk NiMnSb. “I” denotes the interface layers and ± means one layer
deeper in the half-metal or the semiconductor.

semiconductor and −1 one layer deeper in the half-metallic spacer. In the
case of the MnSb terminated half-metallic film there is a difference depending
on the semiconductor termination. In the case of the In termination the Mn
spin moment decreases considerably and is now 3.4 µB compared to the bulk
value of 3.7 µB. For the P terminated InP film the spin moment of Mn at
the interface is very close to the bulk value. At the In interface, the Mn
minority d-states hybridize strongly with the In states and thus the Mn spin
moment is severely reduced and it shows a negative induced spin moment.
In the case of P, the situation is reversed and P has a positive induced spin
moment. The Mn-d - P-p hybridization is not as strong as the Mn-d - In-p
one and the Mn spin moment at the interface is close to the bulk value. If
we move deeper into the half-metallic film, the spin moments regain their
bulk-like behavior while, if we move deeper in the semiconductor film, the
induced spin moments quickly vanish.

Compared to the MnSb-terminated surface for which in the previous sec-
tion a spin polarization as high as 84% was found, for the interfaces between
MnSb-terminated NiMnSb and InP the situation is completely different.
The hybridization between the d-states of Mn and p-states of Sb with the
p-states of either the In or the P atom at the interface is such that the net
polarization at the interface is almost zero. This is clearly seen in Fig. 7.12,
where with the red line the spin and atom resolved density of states (DOS)
of the atoms at the interface for MnSb/P (up) and MnSb/In (down) contacts
is presented. At the MnSb/P interface, there is a minority interface state
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Figure 7.12: Up: Atom- and spin-resolved DOS for the case of MnSb/P (red
line) and Ni/P (black line) contacts for the two interface layers and one layer
deeper in the half-metal and the semiconductor. For comparison, the bulk
DOS is shown as a grey background. Positive values of the DOS correspond
to the majority spin and negative to the minority.
Down: The same like up, but for the interfaces MnSb/In and Ni/In.
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Figure 7.13: The comparison of the relaxed (black lines) and unrelaxed (grey
background) Ni/P (001) interface. The red lines represent DOS for a doped
interface, where 1/3 of Ni atoms was replaced by Cu atoms

pinned at the Fermi level which destroys the half-metallicity. In the Mn local
DOS, this state overlaps with the unoccupied minority Mn states and it is
not easily distinguished but its existence is obvious if one examines the Ni
and Sb DOS. The situation is similar for the MnSb/In contact.

In the case of Ni terminated NiMnSb films, DOS at EF is more bulk-
like than the case of the MnSb films. Already Ni interface atom has a spin
moment of 0.27 µB in the case of an interface with In and 0.36 µB for an
interface with P compared to the bulk value of 0.26 µB. In the bulk case
Ni has 4 Mn and 4 Sb atoms as first neighbors. On the Ni-terminated (001)
surface the Ni atom loses half of its first neighbors. But if an interface with
P is formed, the two lost Sb neighbors are replaced by two isovalent P atoms
and – with the exception of the Mn neighbors – the situation is very similar
to the bulk. Now the Sb p bands at lower energy are not destroyed, since
P has a behavior similar to Sb and still they accommodate three transition
metal d electrons. Thus the only change in the DOS comes from the missing
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two Mn neighboring atoms. The DOS in Fig. 7.12 (up) for the Ni/P case
(black lines) is clearly very close to the bulk case. In the case of the Ni/In
interface (Fig. 7.12 down), there is an interface state pinned at the Fermi
level which completely suppresses the spin polarization, P (if we take into
account the first two interface layers, P ≈ 0). In the case of the Ni/P
interface the intensity of these interface states is strongly reduced and the
spin polarization for the first two interface layers is 40%, i.e. about 70% of
the electrons at the Fermi level are of majority spin character.

It should be noted here, that all given data up to here refers to unrelaxed
interfaces. Relaxation effects modify these values: Increased hybridization
and charge-transfer can lead to pronouncedly reduced spin polarizations at
the interface. The Ni-P interlayer distance is reduced by 18%, while the
neighboring interlayer distances are expanded by 5-7% as compared to the
ideal bulk values. Thereby, the spin polarization at the interface is decreased
to only 17%. Nevertheless, these effects do not destroy the gap completely,
they just lead to a shift of the local DOS and can be compensated by a doping
of the interface. We found that substituting one third of the Ni atoms by Cu
increases the spin polarization at the interface again to 55% (Fig. 7.13).

Band offsets and partial DOS for NiMnSb/InP contacts

The (minority states) valence-band offset is the energy difference between
the maximum of the valence band (VBM) of the semiconductor and the
maximum of the minority valence band of the Heusler alloy. To calculate
it, we referenced the binding energies of the core states in the interface cal-
culation to their corresponding bulk values as described in Ref. [129]. We
found that the VBM of the semiconductor is 0.83 eV lower than the one of
the half-metal for the In/MnSb contact. For the other interfaces the valence
band offsets are: 0.69 eV for the In/Ni, 0.69 eV for the P/Ni and 0.80 eV
for the P/MnSb contact. In the bulk InP semiconductor the experimental
gap is 1.6 eV, thus the Fermi level, which is 0.07 eV above the maximum of
the minority NiMnSb valence band falls in the middle of the semiconductor
bulk bandgap. This is similar to what is happening also in the case of the
Co2MnGe/GaAs (001) interfaces [125] and these junctions can be used to
inject spin-polarized electrons in the semiconductor.

To make the results more clear, in Fig. 7.14 the layer-resolved partial
densities of states at the Fermi level for all the (001) interfaces are gathered.
As it was mentioned earlier, in the calculations a repeated slab made up
from eight NiMnSb and eight InP layers was used. Thus if one interface is
MnSb/In (shown in the middle of the upper figure) then the other interface
is Ni/P, and it consists of the two layers shown at the edges of this figure (the
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Figure 7.14: Layer-resolved DOS at the Fermi level for the (001) NiMnSb/InP
contacts. Up: MnSb/In and Ni/P interfaces, down: MnSb/P and Ni/In
interfaces.

slab is periodically repeated along the axis perpendicular to the interface).
Similarly, the lower graph contains the results for the MnSb/P and Ni/In
interfaces. The layers at the middle of the semiconductor spacer show a
small DOS due to both the induced states from the half-metal and bulk
NiMnSb states which decay slowly outside the half-metallic spacer and travel
throughout the semiconductor. It is clearly seen that none of the interfaces
is in reality half-metallic. For the MnSb/In interface the Mn atom at the
interface shows an almost zero net spin polarization, while the Mn atom at
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the MnSb/P interface shows a quite large minority DOS, as it was already
discussed. In the case of the Ni/In interface shown in the lower panel of
Fig. 7.14, the net spin polarization is also almost zero. The Ni/P interface
shows a spin polarization P around 40% due to the high polarization of the
Ni atom at the interface which polarizes the P atom at the interface (also
presenting a high majority DOS at the Fermi level).

7.3.3 NiMnSb(111)/InP(111) contacts

As it was mentioned, for the calculations of (111) interfaces 16 layers of
NiMnSb and 12 layers of InP were used. Along the [111] direction the semi-
conductor is composed by pure alternating In and P layers and, thus, the
semiconducting spacer is ending in P on the one side and In on the other
side. The half-metallic spacer on the two sides has two inequivalent termi-
nations. For the Mn termination, as we proceed from the interface deeper
into the half-metallic spacer, the succession of the layers can be either Mn-
Ni-Sb-Mn-... or Mn-Sb-Ni-Mn-... . Similarly for the Sb terminated interface
we can have either Mn or Ni as subinterface layer and for the Ni termination
we can have either Sb or Mn at the subinterface layer.

In Fig. 7.15 the layer-resolved partial DOS for the Ni-terminated inter-
faces are shown. In the top panel are the ...-In-P/Ni-Sb-Mn-... and ...-P-
In/Ni-Mn-Sb-... contacts and in the bottom panel the ...-In-P/Ni-Mn-Sb-...
and ...-P-In/Ni-Sb-Mn-... ones. As it was shown in the previous section,
in the case of Ni- and Mn-terminated (111) surfaces there are strong sur-
face states pinned at the Fermi level which also penetrate deeply into the
subsurface layers. These surface states are present also in the case of the
interfaces studied here, although their intensity decreases slightly due to the
hybridization with the sp atoms of the semiconductor. In all cases the net
spin polarization of the Ni atom at the interface is very small with the ex-
ception of the ...-In-P/Ni-Mn-Sb-... interface (middle of the bottom panel).
For this case the simultaneous presence of the P atom from the one side and
of the Mn atoms at the subinterface layer create an atomic environment for
Ni similar to the case of the Ni/P(001) contact and the spin polarization,
taking into account the two semiconductor layers at the interface and three
first NiMnSb layers, is as high as ∼53% and thus more than 76% of the
electrons at the Fermi level are of majority character. In the case of the
Mn-terminated NiMnSb-films (not shown here) the interface states are even
stronger than for the Ni-terminated spacers and the spin polarization at the
interface vanishes.

In the last part of this study, we will concentrate on the Sb-terminated
(111) interfaces. Firstly, we should note that contrary to the Mn and Ni
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Figure 7.15: Layer-resolved DOS at the Fermi level for the Ni-terminated
NiMnSb/InP(111) contacts. In the middle of the figures a Ni/P interface is
shown with Sb (top) or Mn (bottom) in the subinterface layer, while at the
borders of the figures the layers of a Ni/In interface can be seen with Mn
(top) or Sb (bottom) in the subinterface layer.

terminated, in the case of the Sb- terminated NiMnSb(111) surfaces, the
surface state was not pined exactly at the Fermi level but slightly below it
and the spin polarization in the case of the Sb surfaces was still high. In
the case of the interfaces between In and Sb, half-metallicity is completely
destroyed and the spin polarization is even negative, i.e. there are more
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Figure 7.16: Layer-resolved DOS at the Fermi level for the Sb-terminated
NiMnSb/InP(111) contacts. In the middle of the figures a Sb/P interface
is shown with Mn (top) or Ni (bottom) in the subinterface layer, while at
the borders of the figures the layers of a Sn/In interface can be seen with Ni
(top) or Mn (bottom) in the subinterface layer.

minority-spin electrons at the Fermi level than majority ones as can be seen
from the DOS at the boundaries of the pictures in Fig. 7.16.

In Fig. 7.16, also two different P/Sb-terminated interfaces are shown:
in the top panel the one with Mn as subinterface layer is not of particular
interest since the Mn atom shows a practically zero net spin polarization
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Figure 7.17: Atom- and spin-resolved DOS for the ...-In-P/Sb-Mn-Ni-... in-
terface (left panels) and the ...-In-P/Sb-Ni-Mn-... interface (right panels).
The values in the figures are the spin moments of the atoms at the interface
in µB. The thin solid line indicates the bulk results.

decreasing considerably the overall spin polarization at the interface. On the
other hand, when the subinterface layer is Ni as in the middle of the bottom
panel, all atoms at the interface show a very high majority DOS at the Fermi
level and the resulting spin polarization, P , is ∼74% and thus ∼86% of the
electrons at the Fermi level are of majority character. Although the induced
majority DOS at the Fermi level for the P atom at the interface seems very
large (it is of the same order of magnitude with the Ni one), when we move
away from the Fermi level it becomes very small compared to the majority
DOS of the transition-metal atoms.

The main question needed still to be answered is why the two different
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P/Sb interfaces show such large differences. It is mainly the Mn atom whose
spin polarization at the Fermi level is very different depending of its distance
from the interface. To answer this question, in Fig. 7.17 the layer-resolved
DOS for the two different P/Sb interfaces are shown. In the figure, also the
atomic spin moments are included. The Sb spin moments are −0.02µB for
the ...-In-P/Sb-Mn-Ni-... interface and −0.04µB for the ...-In-P/Sb-Ni-Mn-...
interface. In both cases this is smaller than the bulk value of −0.06µB. The
Mn spin moment for the ...-In-P/Sb-Mn-Ni-... case is 3.72 µB, close to the
bulk value of 3.70 µB, considerably larger than the Mn moment of 3.47 µB for
the ...-In-P/Sb-Ni-Mn-... case. One would expect that in the first case the
exchange splitting should be larger and the unoccupied minority states would
be higher in energy but, as can be seen in Fig. 7.17, the contrary effect occurs.
In the second case the Mn is deeper in the interface and its environment is
more bulk-like and the minority states are pinned at their position. Thus
the Fermi level falls within a minority local minimum resulting in a very
high spin polarization. At the ...-In-P/Sb-Mn-Ni-... contact the Mn atom
is closer to the interface. Here, the larger hybridization of the Mn minority
states (not only with the p-orbitals of Sb but also with the ones of P , since
the last ones are closer now) obliges the minority states to move slightly
lower in energy. Thus, the Fermi level does not fall in the local minimum
but shifts into the peak of the unoccupied minority states and the net spin
polarization vanishes. The Ni states are strongly polarized by the Mn ones
and also in the case of the Ni atom which is deeper than the Mn one, the
Fermi level does not fall anymore within the local minimum.

Wijs and de Groot predicted that the interfaces between the Sb-terminated
NiMnSb(111) film and a S-terminated CdS(111) film should keep the half-
metallicity or at least show an almost 100% spin polarization at the Fermi
level.[40] They considered the case of an interface where the S atoms sit ex-
actly on top of the Sb atoms. As noticed by these authors, a similar structure
can also be realized with InP instead of CdS. Therefore, we calculated also
a ...-In-P/Sb-Ni-Mn-... (111) interface, where the P atoms sit exactly on top
of Sb. The P-In bond at the interface has the shorter one of the two possible
bond-lengths in the zb [111] stacking, and the In atoms closest to the inter-
face at the InP side are at the positions above the closest to the interface
Mn atoms on the NiMnSb side. The calculations for this particular interface
were done in a film geometry. The slab contained 9 layers of NiMnSb and 6
layers of InP. The surfaces of the slab were terminated with the ...-Sb-Ni-Mn
sequence from one side and with the ...-P-In on the other. The positions
of the first four atoms on NiMnSb and the first two atoms of InP at the
interface were allowed to relax, while the rest of the layers of the slab were
allowed to make a rigid shift together. In this case a long (2.61Å) Sb-P bond
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Figure 7.18: Two-dimensional bandstructure of the ...-In-P/Sb-Ni-Mn-...
(111) interface, where the P atoms sit on top of the Sb ones, at the dis-
tance of 2.61Å. Note that the states at the Fermi level are the surface states
located either on the Mn-, or on the In-terminated surface of the slab, and
that there are no interface states at this energy

is formed, which, like in the case of CdS, is stable and the half-metallicity at
the interface is preserved. The surface-bandstructure of the slab is shown in
the Fig. 7.18 with the black lines, compared to the bulk (grey background).
The states which have more than 50% of their weight in:

1. the three surface layers of NiMnSb are plotted in green lines;

2. the two surface layers of InP are shown in orange lines;

3. the three interface layers of NiMnSb are presented in red lines;

4. the two interface layers of InP we see in orange lines.

We see that the interface states of NiMnSb and InP are far away from the
Fermi level. Thus, this interface is half-metallic. Although CdS and InP have
the same number of valence electrons, this is a remarkable result, since S and
P have one electron difference and the electrostatics for the two interfaces
are slightly different resulting in a small displacement of the Fermi level. Our
total energy calculations show that this geometry (on-top stacking) is stable
with respect to other stacking variants. Yet, it is not clear which of the
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possible stackings will be formed under experimental growth conditions, i.e.
layer-by-layer growth.

Like in the case of (001) interfaces, for the case of the (111) interfaces
the band-offset was calculated. It ranges from 0.36 eV in the case of the
...-In-P/Mn-Sb-Ni-... contact up to ≈1 eV for the ...-In-P/Sb-Ni-Mn-... con-
figuration. Thus, the conclusions of the previous subsection are valid also
for these interfaces. We should note here that there is a certain ambiguity in
the evaluation of the band-offsets, caused by the fact that the inequivalency
of the two interfaces induces an electric field in both the bulk sides of the
junction which will show up as a finite slope in the core-level binding energies
as a function of the distance from the interface. While this effect is small in
the half-metal, due to the poor screening in the semiconductor we observe a
pronounced bending on top of this slope in this side of the junction. Nev-
ertheless, the middle of the semiconductor provides a reasonable reference
point for the evaluation of the band-offsets.

Although half-metallicity at the interfaces is in general lost, there are
few contacts in which a high spin polarization remains, which makes them
attractive for realistic applications. Interface states are important because
the interaction with defects makes them conducting and lowers the efficiency
of devices based on spin-injection. Thus, building up interfaces with the
highest spin polarization possible like the ones proposed here is a perquisite
but not a guarantee to achieve highly efficient spin-injection.



Chapter 8

Finite Temperature Effects

The calculations described in previous chapters were dealing with the zero-
temperature properties of half-metals. We have seen that the gap at the
Fermi level in the minority spin band of these materials is in fact a fragile
feature which can be more easily destroyed than preserved. To start with,
there is the spin-orbit coupling which cannot be avoided, but as we have seen
(Sec. 7.1), a proper choice of the compound (meaning, not using compounds
which contain heavy elements) can make this problem negligible. This is,
unfortunately, not the solution to all our problems. We are still left with
the point defects, that can destroy the gap even in bulk, but also with the
interface states, which make one’s life very difficult when, for instance, trying
to achieve spin-injection. These are the problems whose influence can be
diminished by a careful growth of the samples and by an appropriate choice
of the interfaces.

In this chapter, we will say more about the finite temperature effects,
namely, we will get some estimations of the critical temperature (or Curie
temperature, TC) above which the spontaneous magnetization remains zero,
while it is finite under it. To simulate the effect of the finite temperature,
spin waves are used. At zero temperature, the system is in its ground state
(ferromagnetic for the compounds studied here) and, as the temperature
rises, more and more magnons (spin-wave excitations, Sec. 4.2) are excited.
The difference in energies of such an excited state and the ground state, the
so-called magnon energy, is the measure of easiness with which the temper-
ature destroys the magnetization of the system. This means that from such
differences, for some set of different magnons, one should in principle be able
to extract information about the TC . There are several prescriptions to do
this, but since all of them involve calculations in which one determines dif-
ferences of the total energies of the excited system and the system in the
ground state (typically of the order of several mRy), it is recommendable
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to use Andersen’s magnetic force theorem (see Subsec. 2.2.2) to reduce the
calculational cost. So, let us check first if this theorem can be applied for the
magnon energy calculations.

8.1 A Check of the Applicability of the Force

Theorem

The magnon energy is calculated as the difference between the total energy
of the system in which a magnon (defined with the spin cone angle θ and
the wave-vector q, Sec. 4.2) is propagating (this is an excited state), and
the ground state, which is in the systems under study here ferromagnetic.
Applying Andersen’s force theorem (Subsec. 2.2.2) for this case means that
instead of calculating self-consistently the total energy for the excited state,
it is enough to do only one self-consistent calculation for the ground state,
and then consider the introduced magnons as small perturbations, run only
one iteration for a specific magnon, and obtain the magnon energy as the
difference of the sums of eigenvalues of the excited and the ground state.
The only thing that is left to be done is to check how large the cone angle
can be and what is the shortest wavelength of the magnon for which this
perturbation can still be considered small enough and the approximation
valid.

In the left panel of Figure 8.1, a magnon dispersion curve is shown for
a magnon in NiMnSb, defined with a cone angle θ = 30o, and a spin-wave
vector along [001] direction, taking different values in the first Brillouin zone
of the crystal. With the black line the self-consistent calculations are shown
(as well as in the other two panels of the same figure) and with the red line
the corresponding results obtained from the force theorem. The two curves
agree pretty well. The middle and the right panel of the Figure 8.1 show
the dependence of the magnon energy on the squared sinus of the cone angle
(sin2 θ), for two fixed spin-spiral vectors, q=(0, 0, 0.15)2π/a (middle) and
q=(0, 0, 1)2π/a (right). In both of these panels the force theorem results are
shown with blue lines. The middle panel shows that if the magnon has a long
wavelength, the force theorem can be used within the full range of the cone
angles (θ = 0o − 90o). On the other hand, for a short-wavelength magnon
(right panel), the application of the force theorem is not recommendable for
the cone angles larger than θmax ∼ 50o.

A general conclusion is that if one wants to use the force theorem to
obtain the magnon dispersion within the whole first Brillouin zone of the
crystal, cone angle θ = 30o seems to be a reasonable choice, since the energy
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Figure 8.1: Comparison of the force theorem with self-consistent calculations
for NiMnSb. Left: a dispersion curve of a magnon propagating along the [001]
direction, for a cone angle θ = 30o; middle, right: magnon energy vs. squared
sinus of the cone angle for a long-wavelength (middle) and a short-wavelength
(right) magnon propagating along the [001] direction.

differences are not too large for the magnon to stop being a small pertur-
bation, but are also not too small so that one would have to employ a very
large basis, or k-points set. This cone angle was used in the calculation of
the Heisenberg interaction constants Jij presented in Section 8.3.

8.2 Curie Temperature of NiMnSb

In this section, a way to estimate the Curie temperature of the half-Heusler
alloy NiMnSb will be presented. In Fig. 8.2, a self-consistent calculation of
the energy of a flat (θ = 90o) spin-spiral in NiMnSb, along the [001] direction
of the crystal is shown with black dots. The knowledge of the dispersion
relation allows the estimation of magnon-related properties, such as spin
stiffness and Curie temperature. The total energy of a planar spin-spiral is
related to the magnon energy ωq as [130, 47]

ωq =
4µB

M
E(q), (8.1)

where M is the magnetic moment per unit cell. In the long wavelength limit,
the magnon dispersion is quadratic with the prefactor D, also called the
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Figure 8.2: Magnon dispersion along [001] direction in NiMnSb, for a flat
spiral (θ = 90o). Black dots show the self-consistent calculation, while the
red line is a parabolic fit up to a cutoff value qc = 0.65qD, and a constant
ωc = 12, 75 mRy after it.

spin-stiffness constant :
ωq = Dq2. (8.2)

Obviously, the spin-stiffness constant is a measure of the “resistance” the
spins give to the thermal excitations, i.e. a higher spin-stiffness promises a
higher TC . From the parabolic fit in the Fig. 8.2, we obtain the value D =
380meVÅ2, which is in a good agreement with the experimental value of D =
305 ± 40meVÅ2 [43]. The Curie temperature, TC , can be estimated on the
basis of the Heisenberg model. By mapping the first-principles results to the
Heisenberg model, the Curie temperature in the random phase approximation
is given by [131, 132]

1

kBTC
=

6µB

M

Ω

(2π)3

∫

d3q
1

ωq
, (8.3)

where kB is the Boltzman factor and Ω is the unit cell volume. The integra-
tion should in principle be conducted over the whole Brillouin zone, but a
rough estimate can be made even from the dispersion curve in the Figure. 8.2,
given that there is no strong anisotropy, so that the calculated spin stiffness
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is valid also for the spin waves propagating in different directions [133]. Since
this is the case for NiMnSb, we can substitute the expression 8.2 into Eqn. 8.3.
We work in the spirit of Debye approximation, replacing the Brillouin zone
with a sphere of the radius qD = (6π2/Ω)1/3 and finally obtain

1

kBTC
=

3ΩqDµB

Mπ2D
. (8.4)

The Curie temperature calculated from this expression with the use of the
previously obtained spin-stiffness D is TC=1068 K, which is, compared to
the experimental value of 730 K [42], too high. The dispersion curve in
Fig. 8.2 for the short wavelengths deviates significantly from a parabola.
An improvement to the obtained value of TC can be made if one considers
the dispersion curve parabolic up to a cutoff wave vector q=(0, 0, 0.65qD)
and constant, ωc=12.75 mRy, thereafter. The Curie temperature is then
calculated from the expression

1

kBTC

=
3ΩµB

Mπ2

(

3qc
D

+
q3
D − q3

c

ωc

)

. (8.5)

This procedure improves the result considerably, and the obtained value is
now TC = 870K, much closer to the experimental value.

8.3 Exchange Interaction Parameters

Following the prescription of Sec. 5.3, we calculated Heisenberg exchange in-
teraction parameters (Jij) of NiMnSb and CrTe and used the Monte Carlo
method (Sec. 8.4) to obtain an estimate of the Curie temperatures for these
compounds. The calculations for both compounds were performed on a
16 × 16 × 16 k-point mesh with 2745 q-points in the full Brillouin zone.
The planewave cutoff was kmax = 3.8 au−1. The convergence was checked
with respect to the above parameters.

In CrTe, only Cr was considered as a magnetic atom and the exchange pa-
rameters for the Cr-Cr interaction were calculated (Fig. 8.3, left). In NiMnSb,
though the magnetic moment of Ni is small (see Table 6.1) and actually in-
duced by the Mn surrounding atoms, both Ni and Mn were treated as mag-
netic atoms and the parameters of Mn-Mn, Ni-Ni, and Mn-Ni interaction
were calculated (shown with red, green and blue circles, respectively, in the
right panel of Fig. 8.3).

For a weak ferromagnet, the interaction constants Jij follow the character-
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Figure 8.3: Heisenberg exchange interaction parameters of CrTe (left) and
NiMnSb (right) as a function of the distance R between the atoms (in units
of the lattice constant a).

istic Ruderman-Kittel-Kasuya-Yoshida (RKKY) asymptotic behavior [131],

Jij ∝
sin
[

(k↑
F + k↓

F ) · (Ri − Rj) + Φ
]

|Ri − Rj|3
, (8.6)

where kσ
F is a Fermi wave vector direction such that the associated group

velocity is parallel to Ri − Rj and Φ denotes a phase factor. The exchange
interaction according to Eqn.8.6 has an oscillatory character with an envelope
decaying as |Ri−Rj|3. On the other hand, in a half-metal there are no states
at the Fermi level in the minority band, thus the relevant Fermi wave vector
is imaginary, i.e., k↓

F = iK↓
F , corresponding to decaying states. Hence, one

obtains an exponentially damped RKKY behavior [134],

Jij ∝
sin
[

k↑
F · (Ri − Rj) + Φ

]

exp
[

−K↓
F · (Ri − Rj)

]

|Ri − Rj|3
. (8.7)

In both cases shown in Fig. 8.3, we notice this very fast decay of the inter-
action parameters with the distance between the atoms. For a comparison,
in the left panel of Fig. 8.4, the exchange interaction parameters of bcc Fe



Exchange Interaction Parameters 121

0 1 2 3 4 5 6 7
R/a

0

1

2

3
J ij M

2  [
m

R
y]

Fe-Fe

0 1 2 3 4 5 6
R/a

0

500

1000

1500

M
2

∑
 J

oj
 [

K
]/

3
j

bcc Fe

Figure 8.4: Left: Heisenberg exchange interaction parameters of bcc Fe as
a function of the distance R between the atoms (in units of the lattice con-
stant a); Right: The mean-field Curie temperature (Eqn. 8.9), as a function
of the distance from the neighboring atoms taken into account in the sum 8.8.

are shown.1 Obviously, the decay here is much slower. This can be also seen
from the sum of the exchange parameters which describe the interactions of
one atom with all the other atoms in the crystal,

J0 =
∑

i

J0i, (8.8)

where we denote the particular atom with 0 and J0i describes the interaction
of this atom with the atom i. In the mean field (MF) approximation, the
Curie temperature can be calculated from this sum as [59]

kBT
MF
C =

1

3
M2J0. (8.9)

The sum J0 converges rapidly for half-metals as the exchange parameters of
more distant neighbors fall off exponentially. To see this, TMF

C was calculated
according to Eqn. 8.9 as a function of the maximum distance of the neighbors
entering the sum. The results are presented in Fig. 8.5 for Cr-Cr interactions
in CrTe (left) and Mn-Mn interactions in NiMnSb (right). For comparison,

1The calculation was performed at experimental lattice constant a = 2.87 Å, using
GGA, on a 16 × 16 × 16 k-points mesh on 27001 q-points in the full Brillouin zone. The
planewave cutoff was set to kmax = 3.8 au−1.
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the sum of Fe-Fe interactions is shown in the right panel of Fig. 8.4. Each
dot represents one additional contribution J0i to the sum. The atoms that
are at the same distance from the central atom (atom 0) belong to the same
shell. Therefore, each vertical line in these graphs represents one shell. We
see that the sum 8.8 converges to one constant value already at the distance
of three lattice parameters in the half-metallic compounds, but needs to be
calculated for much larger distances in bcc Fe to obtain a converged value.

From the Fig. 8.4 (right) we estimate TMF
C ∼ 1200 K for iron (the ex-

perimental value is 1043 K [59]) and, from the Fig. 8.5 (left), TMF
C ∼ 690 K

for CrTe. Although in Fig. 8.5 (right) the sum J0 was calculated using only
the Mn-Mn interaction parameters, one can estimate a TMF

C ∼ 1050 K cal-
culated at the equilibrium lattice constant of 5.9Å (experimental value being
730 K [42]) for NiMnSb, under the assumption that the atoms of Ni are not
contributing significantly to the TC . This assumption can be justified by the
fact that the magnetic moments of Ni are induced by the Mn surrounding
as well as from the fact that, as we see from the Fig. 8.3 (right), the Ni-Ni
interaction is negligible compared to the Mn-Mn one, while the Ni-Mn inter-
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action is important only for Nickel’s first Mn neighboring shell, containing
only 4 Mn atoms.

8.4 Monte Carlo Simulations

Monte Carlo single-spin-flip algorithm

In the classical limit, the spins are treated as simple three-dimensional vec-
tors, and a good numerical approach to calculate thermal equilibrium prop-
erties is the Monte Carlo method. Here we discuss the method only briefly;
for further information we refer to the textbook of Landau and Binder [135].
Within a Monte Carlo approach, trajectories in phase space are calculated
following a master equation [136] for the time development of the probability
distribution PS(t) in phase space,

dPS

dt
=
∑

S′

(PS′wS′→S − PSwS→S′) , (8.10)

where S and S ′ denote different states of the system, and w stands for the
transition rate from one state to another. The transition rates have to fulfill
the detailed balance condition [136],

wS→S′

wS′→S
= exp

(

E(S) − E(S ′)

kBT

)

. (8.11)

The master equation describes the coupling of the system to the heat bath [136].
Within the Monte Carlo method, trajectories in phase space following Eqn. 8.10
are calculated usually using single-spin-flip dynamics (Fig. 8.6) within a large
but finite supercell (usually with periodic boundary conditions) representing
the whole crystal. A single-spin-flip algorithm goes as follows:

• At the beginning one single spin from the lattice is chosen either ran-
domly, or in some systematic order, and a trial step of this selected spin
is made (in the Fig. 8.6, the trial step is a small tilt from the initial
state).

• The change of the energy of the system with respect to the initial state
is calculated, according to the Hamiltonian of the system.

• The trial step is accepted with a given probability, defined, for instance,
with the Metropolis criterion:

wS→S′ =

{

1, if E(S ′) < E(S)

exp
[

E(S)−E(S′)
kBT

]

, if E(S) < E(S ′)
(8.12)
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1 2 3 4

Figure 8.6: Illustration of a Monte Carlo single-spin-flip algorithm in a three-
spin system: (1) an initial condition; (2) one spin is selected; (3) a trial step
is made; (4) if the trial step is accepted, this is a new starting point.

(with T the temperature and kB Boltzmann’s constant), which is one
possible choice among many satisfying the condition 8.11.

Scanning the lattice and performing the described procedure once per spin
is referred to as one Monte Carlo step. After the Monte Carlo step, the
quantities of interest, e.g., average magnetization per atom, are calculated
for the resulting state (this is the so-called sampling). Then another Monte
Carlo step is taken. In this way the whole phase space is eventually sampled,
giving the proper weight to the most probable states; in the end, a simple
arithmetic average over many sampling steps yields the thermodynamically
averaged quantities for the given temperature.

After each Monte Carlo step, the resulting state might be correlated to
the previous one; therefore one takes several Monte Carlo steps between each
two sampling steps, in order to decorrelate the states. Moreover, the initial
state might be far from equilibrium (for instance, when the initial state is the
ferromagnetic one, but one examines the system close to the Curie point).
Thus an initial number of steps is needed (the relaxation time) in order to
bring the system to equilibrium, before the sampling starts.

The Curie temperature TC can be found by inspection of the average
magnetization curve M(T ); however, due to the finite size of the supercell,
M(T ) does not drop to zero above TC , but decays rather smoothly to low
values. Instead, the peak of the susceptibility

χ =
1

kBT
〈(M − 〈M〉)2〉, (8.13)

is more relevant. The susceptibility is the measure of fluctuations of the
magnetic moment and at the critical temperature, TC , becomes infinite (al-
though, due to the finite size of the system used in the calculations, its value
appears to be finite but peaked).
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Figure 8.7: Magnetic moment per magnetic atom (black lines), and the sus-
ceptibility χ (red lines) as functions of the temperature. The peak of the
susceptibility points at the Curie temperature. It is found to be 640 K for
CrTe (left) and 875 K for NiMnSb (right). Note that the susceptibilities are
much smaller quantities than shown, and they were in both figures scaled by
appropriate factors to make them visible.

Alternatively, one can examine the intersection point of fourth-order cu-
mulants for finite supercells of different sizes. One possible definition of the
fourth-order cumulant is:

U4 =
5

3
− 〈M4〉

〈M2〉2 (8.14)

Scaling arguments [135] lead to the conclusion that, for large enough supercell
sizes, the curves for U4 cross at TC .

TC of CrTe and NiMnSb from the Monte Carlo Method

We applied the Monte Carlo method on CrTe and NiMnSb in order to ob-
tain the Curie temperatures of these compounds. The classical Heisenberg
Hamiltonian,

H = −1

2

∑

i,j

i6=j

JijMiMj, (8.15)

was used to model the systems, assuming that the magnetic moments Mi

can change their orientation, but not their length. The results of these cal-
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at the Curie point TC = 875 K (seen better in the inset). A peak of the
susceptibility χ (blue line, shown for the 4096-atom supercell) at TC is also
present.

culations are shown in Fig. 8.7, where the magnetic moment (per magnetic
atom) is shown with the black line, and the susceptibility, χ, with the red
line (both as functions of temperature).

In the calculations a supercell of 4096 atoms was used for NiMnSb and
one of 4000 atoms for CrTe; interactions to neighbors up to a distance of
three lattice constants for NiMnSb and two lattice constants for CrTe were
taken. For each temperature the total number of Monte Carlo steps was
20000, allowing an initial relaxation time of 2000 steps and then sampling
every 20 steps.

The magnetization curves (black lines in Fig. 8.7) do not go to a sharp
zero at TC , but rather have a tail, as a result of the finite supercell. The
peak of the susceptibility is, on the other hand, pretty sharp and its position
can be used to determine the Curie temperature. From the positions of these
peaks, we estimated for CrTe (Fig. 8.7, left) TC=640 K, and for NiMnSb
(right) TC=875 K (experimental value being 730 K). Note that, for NiMnSb,
the Ni moment was also taken into account within the Heisenberg model.

For NiMnSb, we also calculated the cumulants U4 for a 2744-atom and
a 4096-atom supercell (Fig. 8.8). Their intersection point agrees with the
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susceptibility maximum at TC .

8.5 One Step Beyond: Longitudinal

fluctuations in NiMnSb

In NiMnSb, the local Ni moment is rather induced by the d-d hybridization
with the Mn neighbors. As a consequence, it is not independent (even ap-
proximately) of the short-range spin configuration. For instance, on forcing
the atoms of the Mn sublattice to an antiferromagnetic state, the Ni moment
MNi disappears; and on forcing the moments of the Ni sublattice to have an
angle θ with respect to the moment MMn of the ferromagnetic Mn sublattice
(by constrained density functional calculations), |MNi| becomes smaller and
is completely suppressed already at θ = 90◦.

In view of this observation, it seems that the Heisenberg model, which
explicitly assumes rigid (in magnitude) spins, is inadequate to describe the
Ni sublattice magnetization. In order to gain information on the Ni magne-
tization, one has to allow for longitudinal as well as transverse fluctuations
of MNi. One way of doing this is the following.

At each Ni site i we assume that the spin-polarization energy E(Mi) can
be expanded in powers of the local Ni moment Mi. In the absence of a
polarization due to the surrounding atoms (mainly the first Mn neighbors),
the inversion symmetry E(M) = E(−M) suggests that only even powers of
MNi should enter in the expansion. Whenever there is a net magnetization
of the surroundings, this acts as an effective magnetic field Hi, polarizing
also the Ni site i. Thus we arrive at the following energy functional for the
moment at site i:

E[Hi,Mi] = −Hi · Mi + AM2
i +BM4

i (8.16)

with
Hi =

∑

j 6=i

JijMj + Hext, (8.17)

allowing also for an external constraining field Hext. Although the expression
reminds of a Landau expansion of the free energy, it should be kept in mind
that it refers to the local moment, and not to the thermodynamically averaged
one.

In case of spontaneous magnetization, A would be negative and B posi-
tive, giving an energy minimum at some M0 6= 0 in the absence of a field Hi.
This corresponds to, e.g., the Mn atoms. For the Ni atoms, we have A > 0
and B > 0, giving M0 = 0. Under the influence of a polarizing field Hi 6= 0,
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expression (8.16) gives an energy minimum at a nonzero spin moment MH

in the direction of Hi, its magnitude being given by the condition

0 =
∂E[Hi,Mi]

∂Mi

= −Hi + 2AMH + 4BM3
H (8.18)

The idea is summarized in figure 8.9.
The parameters A and B entering expression 8.16 can be found by first-

principles calculations of the magnetic moment fitted to Equation 8.18. Two
equations are needed to specify the two parameters. Firstly the fully fer-
romagnetic state was chosen, where MH = MNi = 0.258 µB, and H =
∑

j 6=i JijMj and Hext = 0. Secondly, the constrained density functional so-
lution was considered, with MNi rotated by θ = 60◦ with respect to MMn,
as forced by an external field Hext. In practice, Hext is always chosen to be
perpendicular to MNi, so that Hext · MNi = 0, and it does not affect the
energy expression explicitly. But the rotation reduces |MNi| to 0.138µB, and
in Equation (8.18) one has to put H = |

∑

j 6=i JijMj| cos 60◦.2

After determining the values of A and B, the Heisenberg model can be
extended to include the longitudinal change of MNi in the total energy ex-
pression. This reads now:

E = −1

2

∑

i,j

JijMi ·Mj +
∑

Ni atoms i

(

AM2
i +BM4

i

)

(8.19)

This expression can be used together with a Monte Carlo algorithm to find
the statistical mechanical quantities (average magnetization, susceptibility,
etc.) for T > 0. Within the Monte Carlo algorithm, the moment of the
Mn atoms is modified only by direction, while the Ni moment is modified by
direction and magnitude. Since longitudinal fluctuations of MNi are taken
into account, its value should be allowed to increase above the equilibrium
Ni moment of the ferromagnetic state M 0

Ni = 0.258µB.
In the calculations, the magnitude was selected within the range 0 <

MNi < 1.5M0
Ni. The cutoff of 1.5M 0

Ni was chosen after tests with different
cutoffs; it was found that a further increase of the cutoff to 2M 0

Ni brought
no change to the results. Considering that each value of MNi corresponds to
a possible state, the number of possible states of a given magnitude MNi is
determined by the surface area of a sphere of radius MNi; thus it increases
quadratically with MNi. This was taken into account in the Monte Carlo
algorithm, by using a quadratic probability distribution for choosing MNi.

2If the sum in Eqn. (8.17) goes beyond first neighbors, then the tilting of the moments
of the other Ni atoms in the crystal must be also accounted for, whence one has 61.06◦

instead of 60◦.
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Note also that, compared to the Heisenberg model case, many more Monte
Carlo steps (factor of 100) are needed now in order to arrive at averaged
quantities, since the longitudinal fluctuation brings into play many more
possible states.

The Monte Carlo result for the extended Heisenberg model is shown in
figure 8.10, together with the result of the original Heisenberg model (which
considers the Ni moments as rigid in magnitude). In both cases, it can be
seen that the average Ni moment drops very fast at already low temperatures.
However, when allowing for longitudinal fluctuations, the drop is even more
rapid. A peak in the sublattice susceptibility shows the characteristic (though
not critical) transition temperature; above this, the sublattice magnetic order
is strongly reduced. In these calculations, a supercell of 1372 lattice sites
(2744 atoms) was used for the Heisenberg model calculations, while only
256 lattice sites (512 atoms) were used for the extended Heisenberg model
calculations due to the higher numerical effort involved.

These results for the low temperature behavior of the Ni moment should
be considered with caution. It is well-known that, although the classical
Heisenberg model can give a decent estimate of TC , it fails to reproduce the
magnetization curve at low temperatures. In particular, Bloch’s law

M(T ) = M(0) (1 − const · T 3/2) (8.20)

for the magnetization at low temperatures is not reproduced, since the clas-
sical Heisenberg model does not account for the discrete magnon spectrum,
but rather allows for excitations with infinitesimal change of the magnetic
moment. As a consequence the magnetization here falls off linearly with T
instead of the correct behavior of Eqn. (8.20).

Nevertheless, the low-T results indicate a clear tendency: the Ni moment
is weak, and even at low temperatures, far from the phase transition, fluctu-
ations can quickly suppress it. Moreover, longitudinal fluctuations are also
relevant at an energy scale far below TC ; thus even a quantum Heisenberg
model, which can prove successful in other cases, is inadequate. A correct
quantitative modeling of the low-T magnetism in half-Heusler compounds is
thus an open challenging question for the future.

The release of the Ni magnetic degrees of freedom at temperatures so
much lower than TC , and the corresponding loss of short-range order in the
Ni sublattice, makes us suspect, at first sight, that the half-metallic property
is easily lost. This would follow from the argument that the spin-up DOS of
each Ni atom, with randomly oriented spin moment, is partly projected into
the spin-down DOS of its neighbors, and vice-versa. However, in this case
this picture is not completely correct. Since in NiMnSb the origin of the half-
metallic gap is the d-d hybridization between Ni and Mn spin-down states,
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Figure 8.10: Top: Mn- and Ni-sublattice magnetic moment in the cases
of the traditional Heisenberg model and the extended Heisenberg model (in-
cluding longitudinal fluctuations of the Ni moment), calculated by the Monte
Carlo Metropolis method. In both cases the Ni moment drops faster than
the Mn moment. In the case of the extended Heisenberg model, the longi-
tudinal fluctuations cause an even faster decrease of the Ni moment. Note
that the Ni moment has been scaled up by a factor of 10. Bottom: Ni-
sublattice magnetic moment and susceptibility for the same cases as before.
The sublattice susceptibility has a peak much below TC (even more so in the
extended Heisenberg model), indicating the early loss of magnetic order in
the sublattice.
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and since the Ni d states exist under EF for both spin directions, a rotation
of the Ni moment causes a hybridization of the Mn d spin-down states partly
with the Ni spin-up states and partly with the Ni spin-down states. As a
result, the d-d hybridization is still there, and the gap remains. However,
the gap width is reduced. The relevant DOS can be seen in Fig. 8.11, which
concerns the case of the Mn moments remaining in a ferromagnetic configu-
ration, while the Ni moments are constrained to several different angles (at
an 90◦ angle, the magnetic moment of Ni vanishes in the self-consistent cal-
culation). The reduction of the gap width can be understood as a reduction
of the hybridization strength: as the Ni moment is reduced, its spin-down
states move lower in energy and hybridize less with the Mn spin-down states.
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Figure 8.11: Minority DOS of NiMnSb in the gap region: ground state (black
curve with the gray background) and the states when the Ni moment has
been constrained to the angles of 30◦ (red), 60◦ (blue) and 90◦ (green) with
respect to the Mn moment; the DOS is presented in the global frame, which
coincides with the local frame of Mn atoms.

It is important to mention that this simple picture does not account for
the fluctuating Mn moment. In reality, the fluctuations on Mn site will also
create a projection of a part of Mn spin-up DOS into the spin-down DOS of its
neighbours (and vice-versa), which will then lead to further hybridizations.
This will necessarily affect the arrangement of the minority DOS features and
the gap. As a conclusion for application purposes, a high TC is not enough to
guarantee that a half-metal will be applicable at room temperature; in each
case, further investigation of the sublattice magnetization is needed.



Chapter 9

Half-metallic Spin Valves

9.1 Half-metals in junctions: GMR or TMR

Half-metallic ferromagnets are, in principle, ideal spin injectors and detec-
tors, because under moderate voltage they can carry current of only one spin
direction. Therefore, they also constitute ideal components for Giant Mag-
netoresistant (GMR) and Tunneling Magnetoresistant (TMR) devices, with
two half-metallic leads sandwiching a non-magnetic normal metal spacer (in
GMR) or a semiconductor or insulator spacer (in TMR). There is, for in-
stance, the reported experimental result of Bowen and collaborators [137]
who obtained a TMR value higher than 1800% in an LSMO/STO/LSMO
junction; this extreme value was attributed to the half-metallicity of LSMO.

In both the GMR and TMR cases the idea seems simple and its applica-
tion straightforward: in a ferromagnetic (FM) alignment of the half-metals
sandwiching the spacer, some current will pass, either by metallic conduc-
tion (GMR) or by tunneling (TMR) of spin-up electrons. On orienting the
half-metallic leads antiferromagnetically (AF), in the one spin direction no
current can enter the junction (due to the minority-spin gap of the left lead),
while in the other spin no current can exit the junction (due to the minority-
spin gap of the right lead); thus no current can pass. Hence this is the ideal
spin valve.

A careful analysis of the physical processes involved in TMR and GMR
junctions reveals, however, that TMR junctions are much more difficult to
realize and control than GMR. The main difficulty arises from the possible
presence of interface states around EF at the metal-semiconductor (or insu-
lator) contact. Consider, for instance, the TMR junction in Fig. 9.1, where
the bands are shown along the junction as shaded regions. Only one spin
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Figure 9.1: Half-metallic leads can be used in TMR (up) or GMR (down)
junctions for, in principle, ideal magnetoresistance. In the case of TMR
junctions, however, interface states can change the desired result.

direction is shown; in the AF case the layer-resolved DOS of the other spin
direction is symmetric with respect to the center of the junction, while in
the FM case the one shown is supposed to be current carrying (the opposite
spin direction has only band gaps around EF ). The Fermi level is shown in
the middle of the gaps as a dashed line. Heavily shaded regions correspond
to filled bands, while lightly shaded regions indicate the empty bands (above
EF ). At the left half-metal / insulator interface in the AF case, possible
localized interface states are shown. In practice, tunneling form these into
the right lead cannot be avoided. The current j is then determined by the
slowest of two processes: (1) The tunneling rate itself, characterized by a
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time τtunn, and (2) by the rate of re-filling the interface states after an elec-
tron has tunneled, with a characteristic time of τrefil. Then the expression
for j has the form

jAF ∼ 1

τtunn + τrefil

(9.1)

Evidently the slowest of the two processes determines the current. If the
states are immediately refilled after a tunneling event, (as in the metallic
case), then τrefil << τtunn and the current is determined by the tunneling
rate alone, irrespectively of the half-metallic band gap.

What determines the refill time τrefil? For one thing, even at low temper-
atures there are inelastic processes contributing with a rate 1/τinel. Usually
these are slow, but in case that the Fermi level is in the proximity of the
bands, rather than in mid-gap, they can be of significance. More impor-
tantly, there is always some spin-orbit coupling present, leading to a spin
down to spin up ratio at EF of the order of 0.5% (for NiMnSb) [116]. Given
this, and remembering that tunneling can be a very slow process (τtunn is
long), it is very well conceivable that the interface states act practically as a
reservoir of electrons just as any metallic lead would. In this case the spin up
versus spin down current, determining the TMR ratio, depends only on the
tunneling rates for the two spin directions and not at all on the half-metallic
property of the lead!

The tunneling rates themselves depend on numerous factors, such details
of the interface structure, the presence of interface disorder, the symmetry
character of the states, defects in the insulating spacer, etc., just as in the
case of the usual TMR with simple ferromagnetic leads. Some TMR value
will appear, as in most junctions, but the half-metallic property is relevant
only if one can eliminate the interface states.

In the case of GMR, on the other hand, the interface states play no
significant role. In the FM case the conduction is metallic, while in the AF
case it is confined at most to the value of the spin polarization at EF in the
bulk of the half-metallic leads (plus inelastic effects); if this is determined by
the spin-orbit coupling, it should lead to an effect of the order of 1%. This
means that the half-metallic property is fully exploited in the case of GMR,
in contrast to TMR.

We conclude that, in order to have controlled TMR by exploiting the
half-metallic property, we must find half-metal / insulator interfaces without
interface states. This analysis rules out the Heusler alloys as likely candidates
for TMR junctions, due to the interface states formed. But there is a way
out, namely by using zinc-blende compounds; and to this we now turn.
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9.2 AF coupled half-metallic elements

In both GMR and TMR applications, it is desirable that the magnetic leads
are antiferromagnetically coupled in the ground state; then with the applica-
tion of a magnetic field, the leads are re-oriented ferromagnetically, and the
conductance changes. Moreover, the energy difference between AF and FM,
∆E = E(AF ) − E(FM), should be small enough that the switching occurs
at moderate, rather than unrealistically gigantic, fields. In GMR, both the
AF coupling and the coupling energy can be tuned by changing the spacer
thickness d. The coupling strength follows a decaying, oscillating pattern,
thus a convenient thickness can always be found for which ∆E < 0 and small.
In the case of TMR, increasing d still results in a decoupling of the two leads,
with |∆E| exponentially decreasing with d [138]. However, the AF coupling
is not necessarily oscillating. Therefore, it is desirable to find TMR systems
where the AF coupling is dictated by a priori known physical properties,
while |∆E| can be tuned a posteriori by changing the insulator spacer thick-
ness. In addition to this, one should eliminate any interface states at EF for
the reasons discussed above.

The most studied half-metallic ferromagnets are probably Heusler alloys.
The bulk band structure and the origin of the gap are well understood; also
their surface and interface properties have been studied by first-principles
calculations. Unfortunately, almost all calculations of Heusler alloy / semi-
conductor interfaces are conclusive on the appearance of interface states at
EF . On the other hand, another class of half-metals, namely zinc-blende
pnictides and chalcogenides, show no interface states at EF when brought in
contact with zinc-blende (zb) semiconductors [22]. The reason is also well un-
derstood. In the half-metal, the gap originates from a bonding-antibonding
splitting of the transition-metal d states with the p states of the sp anion.
This continues coherently at the interface, between the sp anion and the
cation of the semiconductor. No unsaturated bonds are left to produce spu-
rious interface states.

Furthermore, the magnetic coupling in such zb compounds is rather well
understood. The origin of ferromagnetism is mainly the broadening of the
majority p-d hybrid band, whenever it is partly occupied. This is the case,
e.g., for CrAs and MnAs, or VTe and CrTe. On the contrary, FeAs and MnTe
have one electron too much: the majority p-d band is then fully occupied,
so that no energy is gained by its broadening, and the antiferromagnetic
susceptibility prevails.

Having this in mind, it is natural to ask on the coupling in a junction of
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Figure 9.2: Construction of the half-metallic spin valve. The ground state
(AF 1) is antiferromagnetic and completely insulating, while the ferromag-
netic (FM) state is half-metallic and conducting. The energies are given in
meV/junction.

the form (given layer-by-layer):

· · ·MnAsMnAsMnTeMnAsMnAsMn · · · . (9.2)

Is the Te layer in the middle enough to couple the leads antiferromagnet-
ically? The answer is, in many cases, yes. If the interaction energy |∆E|
is too high, the layers can be further decoupled by introducing one or more
semiconductor layers in-between:

· · ·MnAsMnAsMnTeCdTeMnAsMnAsMn · · · . (9.3)

A similar approach would be to change the 3d atom at the interface, instead
of the sp atom. In the junction

· · ·CrTeCrTe Mn TeCdTe Mn TeCrTeCr · · · (9.4)
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Figure 9.3: Density of states at EF for the AF 1 (left) and AF 2 (right)
configurations. Evidently, the valve is insulating.

the Mn atoms at the interface can induce an antiferromagnetic coupling
between the leads. The idea is always to introduce elements with higher
number of valence electrons at the interface—for instance replace a group V
element (As) by a group VI one (Te), or Cr by Mn, so that the majority
p-d hybrid bands are filled and the coupling turns to AF. Similar effects are
observed in the case of Mn-doped II-VI semiconductors (e.g. (Cd,Mn)Te),
which present a disordered local moment state due to an AF Mn-Mn inter-
action [108], in contrast to ferromagnetic Mn-doped III-V semiconductors
(e.g. (Ga,Mn)As) [139].

A study of a (001) junction of the form 9.4 gives promising results. In
Fig. 9.2 we present the calculated geometry in more detail. A supercell was
used in the calculation, consisting of two “leads”, each having two Cr and two
Mn layers (and corresponding Te layers), and separated by a CdTe layer for
decoupling. Various possible magnetic configurations were examined. The
ground state (AF 1 in Fig. 9.2) is of antiferromagnetic nature, as expected.
The nice feature is that, in the ground state, each lead is by itself half metal-
lic, so that the whole system is non-conducting. This is evident also from
Fig. 9.3a, where the layer-resolved density of states at EF is shown. Spin-
down electrons are blocked in the first half of the junction, whereas spin up
electrons are blocked in the second part.

A state with higher energy (AF 2 in Fig. 9.2, 17 meV higher than the
ground state), where the Mn atoms within each lead obtain the direction
of the Cr atoms, is still insulating, as shown in the layer-resolved DOS of
figure 9.3b. It is important that in both cases there are no minority-spin
interface states in the vicinity of EF .
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Figure 9.4: Density of states for the AF 3 (left) and FM (right) configurations.
Now the junction is conducting.

Further higher in energy we find the conducting configurations, which
are half-metallic throughout the junction. They are named AF 3 and FM
in figure 9.2, with the latter being the fully ferromagnetic state. They are
31 meV and 37 meV, respectively, higher in energy than the AF 1 ground
state. Their half-metallic character can be seen in the DOS plot of figure 9.4.

It can be argued that the energies of 30-40 meV involved for switching
from the AF 1 to the AF 3 or FM states are too high to allow switching via an
external field; after all, 1 meV∼24.4 Tesla/µB. However, the leads can be fur-
ther decoupled by introducing more semiconducting CdTe layers in-between.
Since the coupling energy falls off exponentially with spacer thickness, a de-
sired energy difference can be quickly achieved. The decoupling can be seen
by comparison to the case without a CdTe layer (the interface is then of
the form Mn-Te-Mn); then the AF 1 state is higher than the FM state by
248 meV. This means that one CdTe layer lowers the energy difference by
an order of magnitude. Two or three more CdTe layers should decouple the
layers sufficiently.
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Chapter 10

Conclusions

In this work, an ab initio study of the half-metallicity in half- and full-
Heusler alloys and zinc-blende compounds was presented. The calculations
were performed within the Density Functional Theory, using a Full Potential
Augmented Planewave method as implemented in the FLEUR code.

The half-metallic ferromagnets, materials which show a metallic behavior
in the majority spin band and semiconducting behavior in the minority spin
band, are very interesting for applications in the field of spintronics, since,
due to the 100% spin polarization that they present at Fermi level, they
can maximize the efficiency of spintronic devices. For this reason they are
extensively studied, in order to understand the mechanism which creates the
half-metallic gap, as well as the mechanisms that might destroy it.

The full-Heusler alloys, which crystallize in L21 structure, are described
by the formula X2YZ, where X and Y are transition elements and Z is an sp-
element. If the place of one of the two X-atoms remains empty, we obtain the
C1b structure that characterizes the half-Heusler alloys which are described
by the formula XYZ. Finally, leaving the place of Y-atom in C1b structure
empty, we are left with the zinc-blende structure, which is the one adopted
by the half-metallic transition-metal chalcogenides and pnictides. We have
seen that the gap in half- and full-Heusler alloys is formed as a result of
the hybridization of the d-orbitals of the two transition metals, which gives
the bonding and antibonding hybrids that in the minority band have a gap
in-between. In the zinc-blende compounds, the half-metallic gap is a result
of the hybridization of the t2g d orbitals of the transition metal with the
p orbitals of the sp-atom, giving rise to the bonding-antibonding splitting.
The characteristic of all the half-metallic compounds is an integer magnetic
moment whose value can be found according to the rules derived in Chapter 6.

The half-metallic gap is obtained in a perfect geometry, without spin-
orbit coupling. When the spin-orbit coupling is introduced, a small density
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of states appears in the gap and the spin-polarization is reduced. We find
this reduction to be small, less than 1% for compounds, which do not contain
heavy elements. Surfaces break the three-dimensional symmetry of the crys-
tal and at the surface some states might appear in the gap. The same is valid
for interfaces with other materials. We have investigated how this symmetry
breaking influences the half-metallic gap of NiMnSb, and found that all the
(001) and (111) surfaces present surface states in the gap which reduce the
spin-polarization in the first several surface layers. We also investigated the
(001) and (111) NiMnSb/InP contacts and found that only one of the possible
(111) interfaces remains half-metallic in a somewhat unexpected geometry.
Although all the other investigated interfaces lose half-metallicity, some of
them remain highly spin-polarized, and thus attractive for applications.

The behavior of the half-metallic compounds at finite temperatures is
one of the most important issues when the applications are considered. This
behavior was investigated here by mapping the ab initio total energy calcu-
lations of different magnetic configurations to the Heisenberg model. Sev-
eral approximations to determine the Curie temperature, TC , (random phase
approximation, mean field approximation and Monte Carlo method) were
presented. The estimated TC of NiMnSb is in nice agreement with the ex-
periment. The predicted TC of CrTe, and the (experimentally known) TC

of NiMnSb are both much higher than room temperature and in this aspect
they could both be considered good candidates in applications. However,
after analyzing the results for NiMnSb at finite temperatures below TC , ob-
tained from Monte Carlo calculations, we see that this conclusion should
be taken with caution. The fluctuations of the magnetic moment of the
Ni atom are very large and it is vanishing at the temperatures much lower
than TC , and lower than the room temperature. The loss of the Ni-magnetic
moment, although it doesn’t destroy the the half-metallic gap, through the
changes in hybridization, affects the width and the position of the gap with
respect to the Fermi level. In potential applications it is necessary to make
a careful choice of the half-metallic material. One solution could be to look
for materials with similar strength in the exchange interaction between all
components.

Finally, we propose an application of the half-metallic ferromagnets as
the ideal spin-valves. Multilayers of two half-metals, which are coupled an-
tiferromagnetically in the ground state will behave as insulator. Applying a
magnetic field will align the moments of both half-metals ferromagnetically
In this ferromagnetic configuration the valve is conducting (with a 100% po-
larization at the Fermi level). In such a construction, the interface states
can play a crucial role in determining the conductance. Thus, once again we
conclude that a careful choice of the material has to be made. In this thesis,
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the use of zinc-blende half-metallic compounds is suggested, since these ma-
terials do not present interface states when they are brought in contact with
zinc-blende semiconductors in the proposed TMR junctions.
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[3] I. Žutić, J. Fabian, and S. Das Sarma. Rev. Mod. Phys., 76:323, 2004.

[4] J. de Boeck, W. van Roy, J. Das, V. Motsnyi, Z. Liu, L. Lagae,
H. Boeve, K. Dessein, and G. Borghs. Semicond. Sci. Tech., 17:342,
2002.

[5] F. Heusler. Verh. Dtsch. Phys. Ges., 5:219, 1903.

[6] P.J. Webster and K.R.A. Ziebeck. Alloys and Compounds of d-
Elements with Main Group Elements. Part 2. Landolt-Börnstein, New
Series, Group III, vol 32/c, Springer, Berlin, 2001.

[7] K.R.A. Ziebeck and K.-U. Neumann. Magnetic Properties of Metals.
Landolt-Börnstein, New Series, Group III, vol 32/c, Springer, Berlin,
2001.

[8] J. Pierre, R.V. Skolozdra, J. Tobola, S. Kaprzyk, C. Hordequin, M.A.
Kouacou, I. Karla, R. Currat, and E. Lelièvre-Berna. J. Alloys Comp.,
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