Energy System 2050 – Sustainability Assessment, 2015 - 2020

Description
Life-Cycle-Oriented Sustainability Analysis at System Level (FT4): to successfully continue and complete the Energiewende, it is important that the technical and scientific in addition to the ecological, economic and social aspects of the transformation are analyzed comprehensively, at an early stage, and incorporated into the process. In this research topic, a joint method for the sustainability assessment of technologies is developed. This method consists of the elements Life Cycle Costing (LCC) and Life Cycle Assessment (LCA) in addition to an assessment according to social indicators. This method is used to assess three case studies in three research topics (RT 4.2, 4.3, 4.4) which serve as examples. The findings and results of the case studies provide the basis for a sustainability assessment at the system level (RT 4.1).

Research topics 4.1 to 4.4:
RT 4.1: Development of Methods for Sustainability Assessment at System Level External Link – DLR
RT 4.2: Storage and Grids – KIT-ITAS
RT 4.3: Bioenergy – KIT-ITAS
RT 4.4: Pathway Analysis Hydrogen – FZJ-IEK


Case study „Pathway analysis hydrogen“
In this case study, a sustainability analysis for the provision and use of hydrogen in the transport sector is carried out based on the findings from FT 3 (Energy and raw material paths with hydrogen). The scenario framework for this case study suggests an increased expansion of hydrogen mobility. The process chain for the analyses consists of wind power production and alkaline water electrolysis mainly in Northern Germany, the transport of gaseous hydrogen by pipeline and storage in geological reservoirs, e.g. salt caverns, the release of hydrogen at filling stations and its use in cars. This process chain is compared to a reference concept with hydrogen production by natural gas steam reforming and gaseous transport by trucks. Alternatively to transport in pipelines and storage in caverns, transport and storage by Liquid Organic Hydrogen Carriers (LOHC) is investigated. Cost and material flow models will be developed for these process chains in order to determine the economic and ecological parameters. For the LCA, the openLCA software and the ecoinvent database will be used. Social indicators will be collected individually.

Project Duration
July 2015 – December 2020

Funded by
Helmholtz Association of German Research Centres (HGF)

Project Partners
Deutsches Zentrum für Luft- und Raumfahrt (DLR)
Helmholtz Zentrum Dresden Rossendorf (HZDR)
Max-Planck-Institut für Plasmaphysik (IPP)
Karlsruher Institut für Technologie (KIT)
Forschungszentrum Jülich (FZJ): Institut für Energie- und Klimaforschung (IEK-3, IEK-10)

Project Manager IEK-STE
Dr.-Ing. Petra Zapp

Results

  • Haase, M. ; Wulf, C. ; Baumann, M. ; Rösch, C.
    Comparative sustainability assessment of alternative technologies and fuels for individual motorized mobility
    Prospective Multidimensional Assessment of Energy Technologies and Scenarios, ProMETS, online, Germany, 25 Feb 2021 - 26 Feb 2021

  • Wulf, C. ; Haase, M. ; Bauman, M. ; Zapp, P.
    Determination and application of weighting factors for sustainability assessment in the Helmholtz Initiative Energy System 2050
    Prospective Multidimensional Assessment of Energy Technologies and Scenarios, ProMETS, online, Germany, 25 Feb 2021 - 26 Feb 2021

  • Böschen, S. ; Grunwald, A. ; Krings, B.-J. ; Rösch, C. ; Haase, M. ; Baumann, M. ; Wulf, C. ; Rösch, C. ; Zapp, P.
    Multikriterielle Analysen zur Entscheidungsunterstützung in der Technikfolgenabschätzung
    Technikfolgenabschätzung: Handbuch für Wissenschaft und Praxis Baden-Baden : Nomos Verlagsgesellschaft mbH & Co. KG 306-320 (2021). doi:10.5771/9783748901990-306

  • Wulf, C. ; Zapp, P.
    Sustainability assessment of innovative energy technologies – Hydrogen from wind power as a fuel for mobility applications
    Journal of sustainable development of energy, water and environment systems 9(3), 1 - 21 (2021). doi:10.13044/j.sdewes.d8.0371

  • Baumann, M. ; Domnik, T. ; Haase, M. ; Wulf, C. ; Emmerich, P. ; Rösch, C. ; Zapp, P. ; Naegler, T. ; Weil, M.
    Comparative patent analysis for the identification of global research trends for the case of battery storage, hydrogen and bioenergy
    Technological forecasting and social change 165, 120505 (2021). doi:10.1016/j.techfore.2020.120505

  • Benitez, A. ; Wulf, C. ; Grube, T. ; Kuckshinrichs, W. ; Palmenaer, A. d. ; Lengersdorf, M. ; R€oding, T. ; Robinius, M. ; Stolten, D.
    Ecological assessment of fuel cell electric vehicles with special focuson type IV carbon fiber hydrogen tank. Journal of cleaner production 278, 123277 (2021). doi:10.1016/j.jclepro.2020.123277

  • Junne, T. ; Simon, S. ; Buchgeister, J. ; Saiger, M. ; Baumann, M. ; Haase, M. ; Wulf, C. ; Naegler, T.
    Environmental sustainability assessment of multi-sectoral energy transformation pathways: Methodological approach and case study for Germany. Sustainability 12(19), 8225 - (2020). doi:10.3390/su12198225

  • Wulf, C.; Reuß, M.; Grube, T.; Zapp, P.; Robinius, M.; Hake, J.-F.; Stolten, D. (2018) Life Cycle Assessment of hydrogen transport and distribution options. Journal of Cleaner Production 199, 431-443. doi:10.1016/j.jclepro.2018.07.180
    Wulf, C.; Zapp, P. (2018) Assessment of system variations for hydrogen transport by liquid organic hydrogen carriers. Int. J. of Hydrogen Energy 43, 11884-11895. doi:10.1016/j.ijhydene.2018.01.198

Contact
Dr. Petra Zapp
Forschungszentrum Jülich
Institute of Energy and Climate Research
Systems Analysis and Technology Evaluation (IEK-STE)
e-mail: p.zapp@fz-juelich.de

Project Website
http://www.helmholtz.de/forschung/energie/energie_system_2050/

Last Modified: 25.07.2022