

# Remote Scientific Visualization at Jülich Supercomputing Centre

Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH, Germany Cross-Sectional-Team Visualization



### **Visualization at JSC**

#### JUWELS: General Hardware Setup



Visualization is **NOT** limited to vis. nodes **ONLY**. (software rendering is possible on any node)

InfiniBand





#### JURECA-DC: General Hardware Setup



Visualization is **NOT** limited to vis. nodes **ONLY**. (software rendering is possible on any node)



# **Visualization at JSC**

**General Software Setup** 

#### Special Software Stack on Vis Nodes:

Base Software:

| X                   | X-Server, X-Client (Window-Manager)               |
|---------------------|---------------------------------------------------|
| OpenGL.             | OpenGL (libGL.so, libGLU.so, libglx.so), Nvidia   |
| Middleware:         |                                                   |
|                     | Xpra                                              |
| V8                  | Virtual Network Computing: VNC-Server, VNC-Client |
| VirtuzGL            | VirtualGL                                         |
| Parallel and Remote | e Rendering Apps, In-Situ Visualization:          |

ParaView

ParaView

sit

Vislt

Other Visualization Packages (installation on user demand):

VMD, PyMol, Blender, GPicView, GIMP



# **Visualization at JSC**

Usage Model for Vis Nodes

#### **JUWELS projects:**

- Visualization possible on 4 vis login nodes
- No specific visualization batch nodes
- JUWELS-Booster user have access to JUWELS vis login nodes

#### **JURECA-DC projects:**

- Visualization possible on all 12 Login nodes with 2x Nvidia RTX8000
- No specific visualization batch nodes
- As of December 2020, Visualization software stack under construction

#### Non HPC-Project Users:

- apply for test project



The following examples are given for JUWELS Access to JURECA-DC similar



**General Setup** 





at Jülich Supercomputing Centre

- X forwarding + Indirect Rendering slow, maybe incompatible → bad idea
- "remote aware" visualization apps (ParaView, VisIt) application dependent error-prone setup
- Xpra stream application content with H.264 + VirtualGL fast, our recommendation → good idea
- VNC (Virtual Network Computing) + VirtualGL
   full remote desktop, but slower than Xpra -> medium good idea



with X Forwarding + Indirect Rendering

#### Traditional Approach (X forwarding + Indirect Rendering) ssh –X <USERID>@<SERVER>

- uses GLX extension to X Window System
- X display runs on user workstation
- OpenGL command are encapsulated inside X11 protocol stream
- OpenGL commands are executed on user workstation

#### disadvantages

- User's workstation requires a running X server.
- User's workstation requires a graphic card capable of the required OpenGL.
- User's workstation defines the quality and speed of the visualization.
- User's workstation requires all data needed to visualize the 3d scene.
- This approach is known to be error prone (OpenGL version mismatch, ...)

#### Try to **AVOID** for 3D visualization.



with Xpra (or VNC) + VirtualGL

- X-applications forwarded by Xpra (or VNC) appear on the local desktop as normal windows
- allows disconnection and reconnection without disrupting the forwarded application
- advantages
  - No X is required on user's workstation (X display on server).
  - No OpenGL is required on user's workstation (only images are send).
  - Quality of visualization does not depend on user's workstation.
  - Data size send is **independent** from data of 3d scene.
  - Disconnection and reconnection possible.
- VirtualGL for hardware accelerated rendering: use vglrun <application>
  - it intercepts the GLX function calls from the application and rewrites them.
  - The corresponding GLX commands are then sent to the X display of the 3d X server, which has a 3D hardware accelerator attached.
- Good solution for any OpenGL application e.g. ParaView, VisIt, IDL, VMD, PyMol, ...

# Xpra Integration in JupyterLab@JSC



- How to start Xpra-Session:
  - Within JupyterLab@JSC <u>https://jupyter-jsc.fz-juelich.de</u>
     Brand New Feature: start Xpra and visualization apps from Jupyter in the Browser → to be presented in slides about JupyterLab (Jens Henrik Göbbert)
  - Alternative: start session manually, see next slides



with Xpra + VirtualGL



5. Stop the Xpra session by xpra stop :3





### Step 1: login to a (visualization) login node

#### Linux:

ssh <USERID>@juwelsvis02.fz-juelich.de

#### • Windows:

connect via a ssh client, e.g. PuTTY. The PuTTY ssh keyagent pageant may be usefull, too.





#### Step 2: start xpra on HPC node and notice the displaynumber in the output

For example, start an xterm:

```
jwvis02> module --force purge
jwvis02> module use otherstages
jwvis02> ml Stages/Devel-2020 GCCcore/.9.3.0 xpra/4.0.4-Python-
3.8.5
```

jwvis02> xpra start --start=xterm

• • •

Actual display used: :3

• The display-number is needed to connect to the Xpra session

# Setup Xpra



Step 3: connect to Xpra session Install Xpra on your local machine. Download from www.xpra.org

### Linux: use command

local\_machine> xpra attach
ssh://USERNAME@juwelsvis02.fz-juelich.de/3



|                  | Session Launcher          | -  |     | × |
|------------------|---------------------------|----|-----|---|
|                  | Connect to xpra server    |    |     |   |
| Mode: SSH 🔹      | •                         |    |     |   |
| Server: zilken1  | juwelsvis02.fz-juelich.de | 22 | : 3 |   |
| Server Password: | Advanced Options          |    |     |   |
|                  |                           |    |     |   |

Page 15

# Setup Xpra



### Step 4: start visualization application

After successful connection, an xterm window will show up on your local desktop.

Start your application there, e.g. ParaView:

| 🖳 zilken1@jwvis02:~/bin on juwelsvis02.fz-juelich.de 🛛 🗖                                                                                                                               | × |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| [zilken1@jwvis02 bin]\$ moduleforce purge<br>[zilken1@jwvis02 bin]\$ ml Stages/2020 GCC/9.3.0 ParaStationMPI/5.4.7-1<br>Preparing the environment for use of requested stage ( 2020 ). |   |
| [zilken1@jwvis02 bin]\$ ml ParaView/5.8.1-Python-3.8.5<br>[zilken1@jwvis02 bin]\$ vglrun paraview<br>[zilken1@jwvis02 bin]\$ ∎                                                         |   |
|                                                                                                                                                                                        |   |
|                                                                                                                                                                                        |   |
|                                                                                                                                                                                        |   |
|                                                                                                                                                                                        |   |
|                                                                                                                                                                                        |   |

Step 5: When you are done, stop the session by
jwvis02> xpra stop :3



with VNC + VirtualGL







Preliminary step: **setup a VNC Password** (need only be done once)

- Login to a JUWELS vis login node or JURECA login node, create the directory ~/.vnc and define VNC password
- E.g.:

```
ssh <USERID>@jurecavis.fz-juelich.de
mkdir ~/.vnc
vncpasswd
```





Example for JUWELS. Similar for JURECA, just use login nodes

Step 1: login to a specific visualization login node

Hint: to establish a ssh tunnel, you need to connect to the same login node twice! Therefore:
 Don't use the "generic" names (juwelsvis, jureca).
 Instead select a specific node randomly (juwelsvis00 .. juwelsvis03, jureca01 .. jureca12)

#### Linux:

ssh <USERID>@juwelsvis02.fz-juelich.de

#### • Windows:

connect via a ssh client, e.g. PuTTY. The PuTTY ssh keyagent pageant may be usefull, too.

# **Setup VNC Connection**



# Step 2: start VNC-server on HPC node and locate the display-number in the output

#### Example:

```
vncserver -geometry 1920x1080
...
desktop is <node-name>:3
...
```

The display-number is needed to establish the ssh tunnel (see step 3).
 The VNC-server listens to TCP-port 5900+display-number (5903 in the example)

# **Setup VNC Connection**



Step 3: establish the ssh tunnel

Use the correct TCP port! Port must correspond to the display number (3 in this example)

#### Linux:

ssh -N -L 5903:localhost:5903
<USERID>@juwelsvis00.fz-juelich.de

 Windows:
 Use e.g. PuTTY to setup the tunne

| Category:                                                                                                                                | ategory:                                                                                                                     |                                                                              |                                                                                                                                        | -                                                                             |                                                              |                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------|
| - Features                                                                                                                               | Options controlling SSH port forwarding                                                                                      |                                                                              | Features                                                                                                                               | Options controlling SSH port forwarding                                       |                                                              |                                                   |
| <ul> <li>→ Window</li> <li>→ Appearance</li> <li>→ Behaviour</li> <li>→ Translation</li> <li>⊕ Selection</li> <li>→ Colours</li> </ul>   | Port forwarding    Local ports accept connections from other hosts   Remote ports do the same (SSH-2 only)  Forwarded ports: |                                                                              | <ul> <li>→ Window</li> <li>→ Appearance</li> <li>→ Behaviour</li> <li>→ Translation</li> <li>→ Selection</li> <li>→ Colours</li> </ul> | Port forwarding Local ports Remote port Forwarded port                        | accept connection<br>ts do the same (SS<br>s:<br>alhost 5903 | is from other hosts<br>iH-2 only)<br><u>R</u> emo |
|                                                                                                                                          | Add new forwarded port:<br>Source port 5903<br>Destination localhost:5903                                                    | dd new forwarded port:<br>jource port 5903 Add<br>Destination localhost:5903 |                                                                                                                                        | Add new forwarded port:<br>Source port 5903 Add<br>Destination localhost:5903 |                                                              |                                                   |
| <ul> <li>Host keys</li> <li>Cipher</li> <li>Auth</li> <li>TTY</li> <li>X11</li> <li>Tunnels</li> <li>Bugs</li> <li>More buins</li> </ul> | ● Local O Hemote<br>● Auto O IPv <u>4</u>                                                                                    | O Dynamic<br>O IPv <u>6</u>                                                  | - Host keys<br>- Cipher<br>B- Auth<br>- TTY<br>- X11<br>- Tunnels<br>- Bugs<br>- More bugs ↓                                           | <ul> <li>Local</li> <li>Auto</li> </ul>                                       | O Remote<br>O IPv <u>4</u>                                   | O Dynamic<br>O IPv <u>6</u>                       |

Page 21





Step 4: start your local VNC viewer

#### Linux:

VNC viewer typically is already part of the Linux distribution or can be installed from a repository. Just start vncviewer with the correct display-number:

```
vncviewer localhost:3
```

Linux/Windows/Mac: Download and install turboVNC: <u>https://sourceforge.net/projects/turbovnc/</u> Connect to localhost:3

| New TurboVNC Connection |       |                   |         |    | ×    |
|-------------------------|-------|-------------------|---------|----|------|
| TURBO<br>VNC            | VNC s | erver: localhost: | 3       | •  |      |
| listen m                | ode   | Options           | Connect | Ca | ncel |



#### **Documentation**

**Visualization Related Documentation** 

Please visit <u>https://trac.version.fz-juelich.de/vis/</u>

> Please send us your feedback. <u>h.zilken@fz-juelich.de</u> j.goebbert@fz-juelich.de

> > Page 23