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Abstract 

Absolute values for step energies can be determined from the temperature dependence of 

island equilibrium shapes and the size dependence of island shape fluctuations. Experimental 

data on island fluctuations are evaluated and the resulting step energies are compared to those 

obtained earlier from the temperature dependence of the equilibrium shape. For islands on 

Cu(100), Cu(111) and Ag(111), the step energies obtained by the two entirely different and 

independent methods agree within the experimental error. The advantages and disadvantages 

of the two methods are discussed. 
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1. Introduction 

The free energy of monatomic steps on single crystal surfaces is a rather important energetic 

parameter. It determines the size and the roughening temperature of facets of the equilibrium 

shape of crystals 1-3. Minimization of the step free energy is the driving force for coarsening 

phenomena at surfaces such as the Ostwald ripening of two-dimensional islands 4-9 and the 

decay of three dimensional nanostructures on surfaces 10, 11. Because of the importance of the 

step energy, considerable attention was paid to theoretical calculations using approximate 12-

16 and first principles methods 17, 18. Surprisingly however, no experimental method for the 

determination of the step energy was known until very recently when three different methods 

where independently proposed (all from this laboratory). An earlier approach to the problem 

by Bartelt et al. 19 made explicit use of the reconstruction induced C2v symmetry of the 

Si(100) surface and is therefore not applicable for surfaces of higher symmetry. The first of 

the new methods 20 is based on the observation of the equilibrium shape fluctuations of 

adatom or vacancy islands. The magnitude of these fluctuations are inversely proportional to 

the step free energy. The method was applied to vacancy islands on the Cu(111) surface and a 

mean step free energy of a|| = 23020 meV was derived 20. Here and in the following  

denotes the step free energy per length and a|| is the atomic length unit along a densely packed 

step direction, so that a|| is the energy per step atom. The second method 21 considers the 

temperature dependence of the equilibrium shape of islands and is based on a theoretical 

expression for the configuration entropy of the 100% kinked step. The method was likewise 

applied to islands on the Cu(111) surface and a step energy of a|| = 31040 meV was reported 

in the first publication 21. Using a larger data set the number reduced to a|| = 27030 meV 22. 

The third method finally, 3 is based on the temperature dependence of facet sizes of three 

dimensional crystallites. The method appears to be even more demanding on the experiment 

and the method has not been tested with experimental data so far.  

The purpose of this paper is to compare the two methods which make use of 2D-island 

shapes, both with respect to theoretical as well as to experimental aspects. On the theory side, 

we point out the principal differences of the energies determined by the two methods and 

estimate the expected magnitude of the deviation in the obtained values which arises from the 

differences. On the experimental side, comparison of the two methods is performed by 

analyzing the same STM images of islands on Cu(100), Cu(111) and Ag(111) (about 13,000 

islands in total). The main conclusion of the paper is that (i) the principal theoretical 

differences between the energies determined by the two methods are small compared to the 
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experimental errors and that (ii) the experimental data obtained by the two methods agree 

quite well. 

The paper is organized as follows. The theory of island shape equilibrium fluctuations which 

was briefly sketched in 20 is outlined in the following section and it is shown how theory can 

be employed to extract the step free energy from experimental data on the fluctuations. 

Section 3 presents new experimental data on the island fluctuations and the data are evaluated 

in terms of the step energy. The step energies obtained from fluctuations are compared to 

those obtained from the temperature dependence of the equilibrium shape. In section 4 the 

advantages and disadvantages of the two methods are discussed with respect to each other. 

Some cumbersome mathematical details of the theory of shape fluctuations are described in 

the appendix. 
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2. Island shape fluctuations  

The relation between the magnitude of island shape fluctuations and the mean step free 

energy is derived using a capillary mode analysis of Khare and Einstein 23, 24. Our notation 

follows largely their treatment and is illustrated in Fig. 1. 
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Fig.1: Equilibrium shapes of islands on the Cu(100) and Ag(111) surfaces around 300 K. For 

Ag(111) and Cu(111) the energies of A-steps (displaying a (100) facet) and B-steps 

(displaying a (111)-facet) agree within 1%. The island has therefore a nearly hexagonal 

shape. The perimeter of the equilibrium shape is described by R(). 

 

The perimeter of an island at time t is described by the radius r(t,). The perimeter of the 

equilibrium shape of an island R(is equal to the normalized time average of r(t,), where 

the normalization ensures that the areas covered by the islands described by R() and r(,t) 

are identicalhe origin of the angle  can be placed at any arbitrary point on the perimeter. 

Here and in the following we choose the center of the position of minimum curvature as the 

origin (in the A-step on (111) islands, Fig. 1b). The relative variation g(,t) defined as 

  
)(R

)(R)t,(r
)t,(g




  (1) 

can be expanded in a Fourier series 
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n

n inexp)t(g)t,(g  (2) 

with gn(t) = g-n
*(t) the Fourier coefficients. The experimental data concern the time average of 

the fluctuation function G(t) defined as  
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For a given island area, the total free energy is minimal for the equilibrium shape (F  F0). 

Because of the fluctuations, the time average of the total free energy is larger by an amount 

t
F . This deviation can be related to the time average of the Fourier coefficients of the 

fluctuation function (see Appendix, Eq. (A13)). The result is  
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The terms n = 1 are omitted from the sum since they correspond to fluctuations of the mean 

position of the island. Since r(,t) is always measured relative to the center of mass of the 

islands, island motion is eliminated from the measurement. According to Eq.(6) the 

contribution of the fluctuations to the free energy is proportional to an average free energy of 

the step   defined as  
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The number  in Eq. (6) is defined as 
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For a circular islands one has  but for real equilibrium shapes  deviates slightly from 

1.  

In the classical continuum limit, each of the capillary modes in Eq. (6) contributes kBT/2 to 

the free energy, so that 
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The time average of the experimental fluctuation function 
t

)t(G  then becomes 
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The sum in Eq. (10) is  
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with )x(  the derivation of the logarithm of the Gamma-function 
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For circular islands ( = 1) the sum in eq. (11) is equal to 3/2 and the magnitude of the 

fluctuations becomes simply 

  



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RTk3
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t
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In order to estimate the effect of non-circular shapes of islands on  and the averaging 

procedure for  we have calculated A() and B() in the Ising-model 25 for triangular lattices. 

The Ising-parameter was chosen so that the kink energy is 0.11 eV and the temperature 330 

K. The Ising-shape is then a rather good representation of the equilibrium shape of islands on 

Cu(111) 22. The result of the calculation for A() and B()/   is shown in Fig. 2. The 

mean value of A() (which is equal to , eq.) is 1.02788 and the mean value of 

B()/( = 0) is 1.01248, hence both are close to the result for a circular shape. We therefore 

conclude that   defined by Eq.(7) is practically equal to the step free energy at  = 0 and the 

sum over the capillary modes (Eq. (10) can be calculated with  = 1. The step free energy can 

therefore be obtained using Eq.(13) and experimental data of the time average of the 

fluctuations 
t

)t(G  as a function of the mean island radius R. One may note that the step free 
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energy , or "tension", and not the stiffness 22 /
~

  enters Eq. (13). The step 

stiffness, which provides the restoring force for a local excursion in a step 7, 26, enters when a 

local description of the fluctuations is given. Here a non local description of the fluctuations 

appeared to be more convenient, since singularities at T=0 are avoided. In a non local 

description the total (free) energy and its distribution among the modes are considered. 
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Fig.2: A() and B((=0) for the triangular Ising model with an Ising parameter to 
represent approximately islands on the Cu(111) surface.  

 

The mean step free energy in Eqs. (7,13) is the mean free energy at the temperature of 

measurement. It is therefore useful to discuss briefly the temperature dependence of the step 

free energy. Since the orientation dependence as a function of temperature is known 

experimentally from the inverse Wulff construction on the experimental equilibrium shape we 

can focus on the temperature dependence of the steps oriented along the direction of close 

packing, the 011-direction. The temperature dependence arises from a configurational and a 

phonon contribution to the entropy. The phonon contribution is due to the different frequency 

spectrum of atoms at steps. The magnitude of the contribution can be estimated by assuming 

that the mean vibrational frequency of an atom is proportional to the square root of its 

coordination number C. This estimate is in agreement with EAM-calculations of the phonon 
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contribution to free energies 27, 28. The configurational contribution is due to the thermal 

generation of kinks in the steps and can be calculated from the kink energy k 22. Thus the 

temperature dependence is approximately described by 

    2/1
terracestepB

Tk/
B|||| CClnTk3eTk2)0T(a)T(a Bk   . (14) 

Here, Cstep and Cterrace are the coordination numbers of atoms in a step and terrace site, 

respectively. For Cu(111) the configurational and phonon contributions to the temperature 

dependence of the free energy at 300 K are thus estimated as 1.03x10-2 meV/K and 

3.25x10-2 meV/K, respectively. The temperature dependence of the step free energy is 

therefore small compared to the absolute value of the step energy (270 meV).  

Because of this small temperature dependence, the step free energy can be determined by 

measuring the fluctuations of islands of different radii at different temperatures. Plotting the 

results vs. the product of radius R and temperature T (Eq. (13)) facilitates the experiments 

considerably since the product RT can be varied over a wider range than the radius R for a 

given temperature. The reason is that for islands grown via homogeneous nucleation at a fixed 

temperature the mean radius is solely determined by the flux of atoms on the surface, and the 

radius depends to a low power on the flux (1/6 –1/4 for metal surfaces).  

 

 

3. Experimental analysis of island fluctuations 

Islands on Cu(100), Cu(111) and Ag(111) were grown by evaporation from a Knudsen cell at 

temperatures ranging from between 280 and 440 K and the island shapes were observed using 

a scanning tunneling microscope (STM). For details on the sample preparation as well as on 

the algorithms used to extract numerical data on the positions of the step edges the reader is 

referred to 22. The shape fluctuations were measured by comparing images of the same island 

obtained in consecutive STM-scans. The total time interval between two consecutive images 

was about 60 s. The shape fluctuations are illustrated in Fig. 3 which displays the mean 

shapes (full lines) and the actual shapes in two images (squares and circles), for Cu(100) and 

Ag(111), respectively.  
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(a)

scan width 200 nm

Cu(100), 408 K

20 nm

(b)

scan width 400 nm

Ag(111), 406 K

50 nm

 

Fig. 3: Mean island shapes (full lines) and individual shapes (circles and squares) of Cu(100) 
and Ag(111). The individual shapes are taken from image No. 10 and 50 in the two series 
which corresponds to a time difference of 2400 s.  

 

Islands decay in size as a function of time because of Ostwald ripening. The islands displayed 

in Fig. 3 are therefore normalized to the same size. Since the mean fluctuations 
t

)t(G  

depends explicitly on the island radius, the shrinking size of the islands with time is also of 

concern for a quantitative determination of the fluctuations. The following procedure was 

adopted: Individual island shapes were divided into subsets in which the change in size was 

less than 10%. In each subset, the individual islands were normalized in area to match the 

mean island area in the set. The fluctuation function G(t) was then calculated from the 

experimental data on the perimeter for each image according to Eqs. (1, 3) and the resulting 

values are averaged to obtain an experimental value of 
t

)t(G  for the set. 
t

)t(G  is assigned 

to the mean radius in the set Rs and plotted vs. the product of Rs and T. The final results are 

displayed in Fig. 4 for Cu(111) and Fig. 5a,b for Cu(100) and Ag(111), respectively. As 

already noticed by Schlößer et al. 20 an additional constant term 0G  must be invoked when 

fitting the experimental data on 
t

)t(G  to a linear dependence on RsT according to Eq. (13)  

  0
B

t
G

4

RTk3
)t(G 


 . (16) 

The constant term is seen also in our data (Fig. 4) when the data are fitted by a straight line.  
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Fig. 4: Mean step fluctuation function 
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)t(G  for islands on Cu(111) vs. the product of the 

mean island radius R and temperature T. 
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Fig. 5: Mean step fluctuation function 
t

)t(G  for islands on Cu(100) (a) and Ag(111) (b)  vs. 

the product of the mean island radius R and temperature T. A constant term has been 
subtracted from the data so that 

t
)t(G  fits to a common line (see text for details). The free 

energy is calculated from the slope according to using Eq. (16).  
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Schlößer et al. attributed the constant term to the noise originating from the limited pixel 

resolution of the STM images, and 0G  was determined from the analysis of experimental 

data obtained at low temperatures 20. The proposition that 0G  is mainly due to pixel noise 

is corroborated by our observation that the constant term obtained from fitting a straight line 

to the data increases with the scan widths of the STM images. In order to be able to determine 

the slope from data obtained with different scan widths the constant term was evaluated by 

fitting a linear slope to the data points obtained for a particular scan width. The constant term 

was then subtracted from the data and the results for different scan widths were plotted vs. 

RT. The data in Fig. 5a and b were treated as described and the line therefore passes nearly 

through the origin. Nevertheless, the slope was determined from a two-parameter linear 

regression. The slopes were evaluated according to Eq. (16) and the results for the step mean 

free energies are displayed in Table 1. The errors quoted are that of those resulting from the 

two-parameter fit. The results are compared to earlier results obtained from the temperature 

dependence of the equilibrium shape 22. We note that for Cu(111) and Ag(111) the energies 

for A- and B-step differ only by less than 1%. This difference is neglected in the following 

discussion. 

 

Surface a|| (meV) [fluct.] a|| (meV) [eq. shape]

Cu(100) 220 11 220 20 

Cu(111) 256 22 270 30 

Ag(111) 233 13 250 30 
 

Table 1: Step free energies obtained from the analysis of step fluctuations and from the 

equilibrium shape method 22. 

 

4. Discussion 

The step energies obtained from the two entirely different methods agree quite well. In fact, 

the match is as good as can be expected, considering the statistical errors. Nevertheless, it 

should be kept in mind that two methods determine not exactly the same energies. To a good 

approximation (see discussion in section 2), the fluctuation method determines the mean step 

free energy at the temperature of measurement, while the aspect method determines the 

energy of the atomically smooth step at T = 0 K 22. The expected differences between the two 



 13
values can be determined from the phonon and kink contribution to the step free energy (Eq. 

(14)) on the one hand, and from inverse Wulff plots to the equilibrium shapes on the other. 

The second column of Table 2 summarizes the kink energies from ref. 22. These kink energies 

are used to calculate the configurational contribution to the free energy of a step oriented 

along the 011-direction at 350 K. Column 4 estimates the phonon free energy at 350 K using 

Eq. (14). The fifth column denoted as 0/  is the ratio of the mean free energy to the free 

energy of a 011-step at 350 K. The numbers are obtained from inverse Wulff plots to the 

equilibrium shapes of islands 22. In the sixth column denoted as a||0(350 K) the free energy of 

011-steps is calculated from the experimental data in Table 1 using the 0/ -column. In 

column 7 these numbers are extrapolated to T = 0 K. These values are then compared to the 

directly determined experimental data on the step energy at 0 K, as obtained from the analysis 

of the equilibrium shapes (Table 1). The differences between the mean free energies at 350 K 

and the step energy at 0 K is rather small, firstly because the correction terms are small, but, 

secondly, also because averaging over the island perimeter and the finite temperature 

corrections work in the opposite direction. In general, the step energies at 0 K agree 

marginally better than energies directly obtained by the two methods. Considering the error 

bars that may be fortuitous, however. 

 

Sample k Fconf Fphonon 0/  a||(350 K) a||0 (0 K)calc. a||0 (0 K)exp. 

Cu(100) 129 -0.84 -6.0 1.064 207 213 11 220 20 

Cu(111) 117 -1.25 -11.3 1.025 250 262 22 270 30 

Ag(111) 101 -2.1 -11.3 1.025 227 241 13 250 30 

 

Table 2: The table summarizes experimental data on steps and presents calculated corrections 
to make the experimental data on the step energies obtained by the two methods directly 
comparable. All energies are in meV. See text for further discussion. 

 

We note that the experimental value for the step free energy for Cu(111) as obtained by the 

fluctuation method is now larger than the number obtained earlier by Schlößer et al. using the 

same method (a|| = 220 20 meV 20). Schlößer et al. investigated the fluctuations of vacancy 

islands rather than adatom islands as in this work. Though in general, we see no theoretical 

reason for different step energies of adatom and vacancy islands, a small difference could be 
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present for the smallest islands considered by Schlößer et al. having a radius of 2 – 3 nm (8 – 

12 atoms per step). However, the main difference between the result here and in ref. 20 is 

attributed to experimental uncertainties. As the data base used in this work is larger (~ 2x), 

the accuracy should be better. Moreover, upon reconsidering the data reported in 20, and 

taking into account also the measurement performed at 263 K, which give a larger value for 

G0 than the one obtained from a linear regression, it seems that the result a||=220 meV 20 is 

too low. Indeed, if the 263 K results are assumed to be representative for non fluctuating 

islands, i.e., for G at an island radius R=0, then a regression of the data of ref. 20, including 

the data points measured at 263 K, would give a step free energy of 26025 meV .  

Comparison of experimental data to theoretical calculation have already been discussed in 22, 

29 and the reader is referred to these papers for details. Here, we only mention that the 

probably only up-to-date first principles calculation concerning step energies on Cu(111) is in 

very good agreement with our result 18.  

Finally, we discuss some experimental aspects of the two methods. Both methods provide 

step energies of comparable accuracy. The slightly larger error for the equilibrium shape 

method, in particular for the (111) surfaces (Table 1) is mostly due to the error in the 

determination of the kink energy. On the Cu(100) surface a more accurate value of the kink 

energy was known from spatial step fluctuations 30 and the error in the step energy is smaller 

correspondingly. Both methods have particular advantages and disadvantages and the choice 

for the optimum method depends on circumstances and the particular interest. If one is 

interested only in the step free energy as such, the fluctuation method has certain advantages. 

The method does not require the input of the kink energy and provides sufficiently accurate 

numbers with a smaller data base than the equilibrium shape method. The method works with 

data obtained at a single temperature or in a small temperature range, provided one can 

generate islands in a sufficiently large size range. This is a definite advantage in particular 

cases, e. g., when one is interested in the step energies of islands on metals in contact with an 

electrolyte. On the other hand, the equilibrium shape methods, when applied to a sufficiently 

large and accurate data set, provides intrinsically more detailed information on energetical 

aspects. In addition to the step energy at T = 0 K, the method yields the angle dependence of 

the step free energy at all temperatures. The kink energy is likewise obtained from an 

Arrhenius plot of the curvature of the steps at the point of minimum curvature. We note that 

once the step energy is known, from using the fluctuation method e.g., the kink energy can be 

determined quite accurately from fitting the minimum curvature on the equilibrium shape at a 
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single temperature. Hence, in some cases a prudent combination of the fluctuation and the 

equilibrium shape method may be the optimum choice. 
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Appendix 

According to equation (1), one can write for the instantaneous radius, 

  r(,t) =  R()·(1 + g(,t)) (A1) 

We consider a situation in which the island area is conserved, thus, 

   


dt),(r)d(R
2

0
22

0
2  (A2) 

where R() is the equilibrium shape of the island, defined by the time average of t),r(  

  
t

2 t),(r)(R   (A3) 

Inserting Eq.A1 in the right hand side Eq.A3,one obtains 
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Expanding g(,t) in a Fourier series (Eq.2) and inserting the expansion in A4, one obtains for 

the Fourier coefficients the expressions : 
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In this work we consider only small fluctuations, 1 t),g(  . Accordingly, we can neglect 

the term t),(g 2
0   in Eq. A5a. The time average of  t),(g n   is then given by 
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The free energy of the perimeter of an island is given by Eq.5. Inserting Eq.A1 in this 

expression and making a Taylor expansion in terms of 




t),g(

 and  t),g(  up to second order, 

one obtains 

















































































 



d
t),g()R(

)(

)R(t),g(

)(

)R(

1
)(2

)(R
t),g(1)()(F(t)

2

0
2

2

2

2

2

2

 

or, 
















 


d
t),g(

)Z(d
t),g(

2

)B(
t)d,)g(()()d()(F(t)

2

0

2

0

22

0

2

0

   (A7) 

where 
2

2 )R(
)(R)( 











 .  The first integral in A7 is constant with time and 

represents the step free energy () integrated along the equilibrium perimeter R(),  





)R(

0 )ds(F . Because B() and 
2

t),g(











 are both positive for all , one can write the 

third integral of Eq.A7 as 
























d
t),g(

2

R
d

t),g(

2

)B(
2

0

22

0

2

, with  

  ))max(B(            ))B((min   , 

  






2

0

)dB(
2

1
 (A8) 

  







































)(

)R(

1
)(R

)()R(
)B(

2

2

2

 (A9) 

, and R is the mean island radius (Eq.4). Replacing t),g( by the Fourier expansion of this 

function and performing the integral, we obtain for the time average of the third integral of 

Eq.A7 : 

   










n t

2
n

2

t

2

0

2

(t)gnRd
t),g(

2

)B(
 (A10) 
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The time average of the second and fourth integral of Eq.A7 can be evaluated by noting that 

  

n
t0

in
tnt

(t)ge (t)gt),g( , because the non zero order terms in the sum vanish 

(Eq.A6). The zero order term in the Fourier expansion is 



0n

2

n0 (t)g
2

1
(t)g

t
 (Eq.A6) 

and does not depend on . Thus  0
(t)gt),g(

t

0

t










, and the time average of the  

fourth integral of Eq.A7 vanishes. The time average of the second integral becomes 

 












0n t

2
n

2

0 0n t

2
n

t

2

0

(t)gAd(t)g
2

)()(
t)d,)g(()(      (A11) 

,where   ))()(max(    A    ))()(min(     or 

  






2

0

)d()(
2

1
A  (A12) 

Since the zero order term in Eq.A10 does not contribute to the integral (n = 0) we can 

combine this equation with Eq.A11, resulting in  

  



0n t

2
n

2
t

(t)g)(nRF(t)  (A13) 

,where 
R

A


  (A14) 

 

Above we defined the equilibrium shape of an island R() through Eq.A3. Instead of this, one 

could define an “average island shape” )(R #   as 
t

t),r()(R #    and use this to derive an 

expression for the free energy of the island perimeter. For the relative variation  

)(R

)(R-t),r(
t),(g

#

#
#




  , Eqs.A4-A6 do not apply, but one can easily show that  

  0t),(g
t

#  . (A15) 

This means that the Fourier coefficients 
t

(t)g #
n  are equal to zero, or  0(t)g(t)g n

#
n 

tt
 

for 0n  . Thus, only the zero order Fourier coefficients 
t

(t)g #
0  and 

t
(t)g0  are different. 

Taking this into account in the evaluation of the Taylor expansion Eq.A7 for the free energy 
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of the island perimeter, one gets essentially the same expression Eq.A13 for 
t

F(t)  , but  

has to be replaced by # = 0 and #  is given by Eqs.A8 and A9 with )R(  replaced by 

)(R #  . 
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