ICS Key Visual

Navigation und Service


Supercomputer liefert neue Einblicke in die Funktion von Glutamat-Transportern

Jülich, 7. Oktober 2019 – Jülicher Forscher haben mithilfe von Simulationen auf dem Supercomputer JURECA einen Kopplungsmechanismus entschlüsselt, der Glutamat-Transporter im Gehirn von Säugetieren antreibt. Diese Proteine, die sogenannten Excitatory Amino Acid Transporters, kurz EAATs, entfernen den Botenstoff Glutamat aus dem synaptischen Spalt zwischen zwei Nerven. Der Beitrag wurde für das Cover der aktuellen Ausgabe des renommierten Fachmagazins „The EMBO journal“ ausgewählt.

The EMBO journalCopyright: The EMBO journal, Volume 38, Issue 19, 1 October 2019 (Scientific image by Daniel Kortzak)

Glutamat ist der am häufigsten vorkommende Neurotransmitter im zentralen Nervensystem. Er sorgt dafür, dass Signale von einer Nervenzelle zur anderen übertragen werden. Zu hohe Glutamat-Konzentrationen sind allerdings schädlich und können zum Absterben der Nervenzellen führen. Deswegen ist der Abtransport durch spezialisierte Moleküle in der Zellmembran, nämlich durch EAAT Glutamat-Transporter, wichtig.

Die EAATs sind sekundär-aktive Transporter, die das Konzentrationsgefälle anderer Teilchen nutzen, um die Glutamataufnahme anzutreiben. Die Transporter binden dazu den Neurotransmitter Glutamat an der Außenseite der Zelle zusammen mit drei Natriumionen, und verfrachten alles zusammen in das Zellinnere. Das natürliche Gefälle der Natrium-Konzentration, die außerhalb der Zelle deutlich höher ist als im Inneren, wirkt so als treibende Kraft, um Glutamat in die Zelle zu befördern.

Bislang war nicht verstanden, wie sich das Transporter-Molekül danach wieder zurückbewegt, um weitere Glutamat-Moleküle aufzunehmen. Die Jülicher Forscher haben diese Frage mit Computersimulationen und Experimenten nun beantwortet. Sie konnten zeigen, wie Kalium-Ionen an den Transporter binden und den Glutamat-Transport aufgrund des vorherrschenden Konzentrationsgefälles beschleunigen.

Glutamat-Transporter EAAT1Glutamat-Transporter EAAT1 mit Andockstellen für K+-Ionen (K1-K4)
Copyright: Kortzak et al., DOI 10.15252/embj.2019101468 (CC BY 4.0)

Der Effekt der Kaliumkopplung zeigt sich unter anderem im Vergleich mit verwandten bakteriellen Formen des Proteins, bei denen der Transport nicht von Kalium abhängig ist. Dieser Unterschied, der im Laufe der Evolution als Ergebnis einer umfassenden Optimierung entstanden ist, war ein wichtiges Hilfsmittel, um den Mechanismus zu verstehen.
Die Erkenntnisse könnten hilfreich sein, um neue Behandlungsverfahren für ischämische Hirnerkrankungen wie dem Schlaganfall zu entwickeln, bei denen erhöhte Glutamat-Konzentrationen auftreten können.

Originalpublikation:

Allosteric gate modulation confers K+ coupling in glutamate transporters
Daniel Kortzak, Claudia Alleva, Ingo Weyand, David Ewers, Meike I Zimmermann, Arne Franzen, Jan-Philipp Machtens, Christoph Fahlke
EMBO J (2019), DOI: 10.15252/embj.2019101468 (Open Access)

Weitere Informationen:

Institute of Complex Systems, Bereich Zelluläre Biophysik (ICS-4)

Ansprechpartner:

Prof. Christoph Fahlke
Institute of Complex Systems, Bereich Zelluläre Biophysik (ICS-4)
Tel.: 02461 61-3016
E-Mail: c.fahlke@fz-juelich.de

Jun.-Prof. Jan-Philipp Machtens
Institute of Complex Systems, Bereich Zelluläre Biophysik (ICS-4)
Tel.: 02461 61-4043
E-Mail: j.machtens@fz-juelich.de

Pressekontakt:

Tobias Schlößer
Pressereferent, Unternehmenskommunikation
Tel.: 02461 61-4771
E-Mail: t.schloesser@fz-juelich.de


Servicemenü

Homepage